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ABSTRACT
BACKGROUND: Genome-wide association studies have identified dozens of genetic risk loci for Alzheimer’s disease
(AD), yet the underlying causal variants and biological mechanisms remain elusive, especially for loci with complex
linkage disequilibrium and regulation.
METHODS: To fully untangle the causal signal at a single locus, we performed a functional genomic study of 11p11.2
(the CELF1/SPI1 locus). Genome-wide association study signals at 11p11.2 were integrated with datasets of histone
modification, open chromatin, and transcription factor binding to distill potentially functional variants (fVars). Their
allelic regulatory activities were confirmed by allele imbalance, reporter assays, and base editing. Expressional
quantitative trait loci and chromatin interaction data were incorporated to assign target genes to fVars. The
relevance of these genes to AD was assessed by convergent functional genomics using bulk brain and single-cell
transcriptomic, epigenomic, and proteomic datasets of patients with AD and control individuals, followed by
cellular assays.
RESULTS: We found that 24 potential fVars, rather than a single variant, were responsible for the risk of 11p11.2.
These fVars modulated transcription factor binding and regulated multiple genes by long-range chromatin
interactions. Besides SPI1, convergent evidence indicated that 6 target genes (MTCH2, ACP2, NDUFS3, PSMC3,
C1QTNF4, and MADD) of fVars were likely to be involved in AD development. Disruption of each gene led to
cellular amyloid-b and phosphorylated tau changes, supporting the existence of multiple likely causal genes at
11p11.2.
CONCLUSIONS:Multiple variants and genes at 11p11.2 may contribute to AD risk. This finding provides new insights
into the mechanistic and therapeutic challenges of AD.

https://doi.org/10.1016/j.biopsych.2023.05.020
Large-cohort genome-wide association studies (GWASs) have
identified dozens of risk loci for Alzheimer’s disease (AD) (1–5),
thereby providing biological insights and potential targets for
AD. However, it has been challenging to distinguish the bio-
logically causative variants and genes from statistical associ-
ations (6), especially for loci with complex linkage
disequilibrium (LD) (1) such as 19q13.2 (the APOE locus),
11p11.2 (the CELF1/SPI1 locus), and 17p13.2 (the SCIMP lo-
cus). Among them, the 11p11.2 locus has the most compli-
cated LD and contains several long AD-associated haplotypes
with hundreds of single nucleotide polymorphisms (SNPs) and
numerous coexpressed genes (7). Previous GWASs have
repeatedly linked 11p11.2 with AD risk (2–5,8,9), but the exact
causal variants and genes at this locus remain controversial
(2,5,10–14). Transcription factor (TF) PU.1 encoded by SPI1 at
11p11.2 has been reported to account for AD risk by modu-
lating the expression of immune-related genes and microglia
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function (9,15,16). However, transcriptomic and functional
studies have suggested other potentially causal genes, such
as MADD (10–12,17), PSMC3 (2,11), and MTCH2 (2,12). The
highly correlated SNPs and coexpressed genes (7,11) at
11p11.2 complicate the identification of true causative variants
and genes. A conceptual update with an unbiased fine-
mapping strategy followed by systematic functional in-
vestigations is urgently required for the decipherment of such
complex loci.

In this study, multilevel omics data, especially those not
confounded by LD and gene coexpression, were integrated with
AD GWASs to identify potentially functional variants (fVars) and
their target genes that are likely involved in AD pathogenesis.
We prioritized 24 fVars from 452 AD-associated SNPs at
11p11.2. As exemplified by base editing, fVars at 11p11.2 were
able to regulate multiple nearby or distal genes via long-range
chromatin contacts. In addition to the established SPI1, 6
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target genes of potential fVars were assigned as likely AD causal
genes at 11p11.2. The convergent functional genomics (CFG)
and cellular assays suggested that these genes could modulate
AD-related molecular phenotypes, indicating that multiple
744 Biological Psychiatry November 1, 2023; 94:743–759 www.sobp.o
genes, rather than a single gene, are responsible for the risk of
11p11.2. Our study offered novel conceptual insight and a new
framework for understanding the molecular mechanisms un-
derlying complex GWAS loci.
rg/journal
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METHODS AND MATERIALS

Detailed data resources, analyses, materials, and methods are
described in the Supplemental Materials and Methods. Briefly,
we defined a regulatory fVar as a genomic variant capable of
modulating gene expression by affecting the binding of certain
TFs to the active regulatory element in which the variant was
located. If a gene was expressionally associated (i.e., an eQTL
gene of the fVar) and physically interacted with the fVar, it was
defined as a target gene of this fVar. The CFG strategy (18,19)
was applied to prioritize likely causal genes from target genes
of fVars. Multiomics data of AD-related tissues/cells were in-
tegrated with AD GWASs (2–4) to distill potential fVars and
likely causal genes. In vitro cellular assays were performed to
confirm the allelic effects of potential fVars and the effects of
likely causal genes on AD-related molecular phenotypes.
Publicly available data utilized in this study, newly obtained
data, and codes are listed in Table S1.

RESULTS

Multiple SNPs and Genes Were Associated With AD
Risk at 11p11.2

From the 3 large-scale AD GWASs [Lambert et al. (4), Kunkle
et al. (2), and Jansen et al. (3)], we retrieved 452 SNPs at 11p11.2
suggestively associated with AD risk (p , 1 3 1025), with
consistent direction of effects (GWAS beta) across the 3 studies
(Figure 1A; Table S2). In the Kunkle et al. study (2), 168 SNPs
reached genome-wide significance (p , 5 3 1028) (Table S2).
SNPs at 11p11.2 were also nominally associated with age at
onset of AD (9) and amyloid-b 42 (Ab42) level in the cerebrospinal
fluid (20) (Figure 1A), suggesting robust involvement of 11p11.2
in AD. LD-based clumping analysis using Plink version 1.9 (21)
showed that these AD-associated SNPs were in 3 long LD
blocks (r2 . 0.8 and nSNPs . 50) and 5 relatively short LD blocks
(r2 . 0.8 and nSNPs , 20) (Figure 1B). Similar LD blocks
(Figure S1) were identified using an independent algorithm,
bigLD (22). Haplotypes constituted by minor alleles of SNPs in
long LD block 2 and short LD block 4 were associated with
reduced AD risk, while those of other LD blocks were associated
with increased AD risk (Figure 1B; Table S2), suggesting that
multiple signals may be responsible for AD at 11p11.2.

These AD-associated SNPs at 11p11.2 may affect the
expression of multiple genes. In the bulk brain expressional
quantitative trait loci (eQTL) dataset eMeta (N = 1194) (6),
expression of 11 genes was significantly associated with
11p11.2 SNPs (p , 3.2 3 1026) (Figure 1C), and 7 could be
replicated in the psychENCODE dataset (N = 1387) (23)
=

Figure 1. Complex LD structure impedes the identification of functional variant
SNPs at 11p11.2 were associated with AD disease states, age at onset, and cer
genome-wide association study data from Kunkle et al. (2) (case-control), Huang
blocks at 11p11.2 based on genotype data of European individuals from the 100
nSNPs . 50); SLB (r2 . 0.8 and nSNPs , 20). (C, D) SNPs at 11p11.2 were associat
(24). Genes with p , 3.2 3 1026 (Bonferroni corrected for 452 SNPs and 35 gen
MetaXcan (31). Genome-wide association study summary statistics from the La
integrated with eQTL of 13 GTEx brain tissues and whole blood (27,28), and D
corrected) are marked by asterisks (*). Ab, amyloid-b; AD, Alzheimer’s disease; B
sional quantitative trait loci; GTEx, Genotype-Tissue Expression; LD, linkage diseq
block; SNP, single nucleotide polymorphism.
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(Figure S2). We also explored eQTL of microglia (24) and
monocytes (25,26), which were actively involved in AD (9,11).
NUP160 was the only gene associated with 11p11.2 in
microglia (the MiGA [Microglia Genomic Atlas] dataset, N =
216) (24) (Figure 1D) (p, 3.23 1026). Except for the previously
reported SPI1 (9), expression of NUP160, DDB2, MADD, and
MTCH2 were also associated with 11p11.2 in monocytes [p ,

3.23 1026, the Raj dataset, N = 461 (25) and the Kim-Hellmuth
dataset, N = 134 (26)] (Figure S3). Different top eQTL genes in
bulk brain tissues (MTCH2), microglia (NUP160), and mono-
cytes (SPI1) eQTL datasets suggested cell type–specific ef-
fects of genes at 11p11.2.

In addition to the eQTL correlation analysis, we performed a
transcriptome-wide association study to infer the potentially
causal genes at 11p11.2 by integrating the AD GWASs
mentioned previously (2–4) with eQTL data of GTEx (Genotype-
Tissue Expression) brain tissues (27,28) and peripheral blood
(29,30). Two algorithms, MetaXcan (31) and the summary data–
based Mendelian randomization (SMR) (32), were applied.
Fourteen likely causal genes were predicted by MetaXcan (31)
(Bonferroni-corrected p , .05/35 genes/14 tissues = 1 3 1024)
(Figure 1E), among which SLC39A13, CELF1, and MTCH2
were also predicted by SMR (32) (p

SMR
, 1 3 1024 and pHEIDI .

.05) (Table S3). We further retrieved fine-mapping data from a
colocalization-based study (24) in which microglia, monocytes,
and bulk brain eQTL datasets [(24) and references therein]
were integrated with AD GWASs (2–4). Colocalization analyses
with eQTLs from bulk brain tissues (ACP2, C1QTNF4, and
MTCH2) and monocytes (MYBPC3, SPI1, and C1QTNF4)
identified multiple genes colocalized with AD GWASs (PP.H4.

0.7), while no genes were identified in microglia (Table S4).
Collectively, integrative analyses based on different eQTL
datasets or algorithms distilled different genes at 11p11.2, and
7 genes (ACP2, MYBPC3, SPI1, SLC39A13, CELF1, MTCH2,
and C1QTNF4) were prioritized by at least 2 algorithms. It
seems that prioritizing highly correlated SNPs and coex-
pressed genes using statistical fine-mapping approaches
based on LD and association statistics can prove challenging,
as suggested by the results obtained in this study and previous
studies (33,34). Alternatively, these results may indicate the
presence of multiple causal variants and genes at 11p11.2.

The Functional Genomic Strategy Prioritized 24
Potential fVars at 11p11.2
Functional fine mapping, rather than statistical association,
may help to identify potentially causal variants with biological
functions (11,35–38). Thus, we integrated bulk and single-cell
multiomics data of brain tissues and data of monocytes to
s and causal genes underlying AD risk locus 11p11.2. (A) A large number of
ebrospinal fluid Ab42 level. Regional association plots were generated using
et al. (9) (age at onset), and Deming et al. (20) (Ab42), respectively. (B) LD

0 Genomes Project (phase 3) (44). LB, LD block (r2 . 0.8); LLB (r2 . 0.8 and
ed with expression of multiple genes in (C) brain tissues (6) and (D) microglia
es) are shown. (E) Multiple potentially causal genes at 11p11.2 inferred by
mbert et al. (4), the Kunkle et al. (2), and the Jansen et al. (3) studies were
GN whole blood (29), respectively. Genes with p , 1 3 1024 (Bonferroni
A, Brodmann area; DGN, Depression Genes and Networks; eQTL, expres-
uilibrium; LLB, long LD block; MiGA, Microglia Genomic Atlas; SLB, short LD
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prioritize potentially regulatory fVars at 11p11.2 (Figure 2A). We
identified a total of 100 (of the 452) AD-associated SNPs
located in bulk or single-cell active regulatory elements
(Table S2). Of these SNPs, 24 were defined as potential fVars
because they were predicted to affect the binding affinities of
certain TFs to active regulatory elements (Figure 2B; Table S2).
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These fVars were in 6 separate LD blocks (1–8 fVars in each
block, median = 3.5) (Figure 2B; Table S5), and 13 fVars were
prioritized by both the bulk-tissue and single-cell data (4
blocks, each containing 2–6 fVars, median = 2.5) (Table S2),
which provided additional evidence for the presence of multi-
ple independent signals at 11p11.2.
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Among 24 potential fVars, 7 (especially rs2280231 and
rs7947450) were in promoters and were predicted to affect the
binding of more TFs than fVars in enhancers (Figure 2B, C). A
total of 99 TFs were predicted to be affected by these 24
variants, including 18 TFs that were affected by 2 or more fVars
(Figure 2C). No variants were located in repressors as revealed
by H3K27me3 and H3K4me3 data (39,40) in the analyzed cells
and tissues (Table S2).

Besides the above regulatory fVars, 2 missense variants
(rs1064608, MTCH2 p.P.281A; rs7941404, AGBL2 p.R394H)
were found in 452 AD-associated SNPs at 11p11.2 (Table S2).
MTCH2 p.P.281A was predicted to be deleterious by com-
bined annotation-dependent depletion (score = 24.8) (41), but
the AGBL2 p.R394H (score = 2.997) was predicted to be
benign. We focused mainly on regulatory fVars in this study.

Allele-Specific Expression Analyses and Dual-
Luciferase Reporter Assays Validated the Allelic
Regulatory Effects of Multiple fVars at 11p11.2

Allele-specific expression (ASE) data of 53 GTEx tissues
(27,28,42) were analyzed to verify the cis-regulatory effects of
the prioritized fVars. Twelve potential fVars were captured by
the ASE data, of which 6 showed significant allelic imbalanced
expression in all combined GTEx tissues (binomial test,
Bonferroni-corrected p , .05) (Figure 3A), and 5 had relatively
insufficient capture rate for analysis (Figure S4). Four of the 6
fVars showed significant allelic effects (Bonferroni-corrected
p , .05) (Figure S5) when only brain tissues were analyzed. In
particular, fVar rs35624992 in the promoter of C1QTNF4, a
gene specifically expressed in the brain (43), had brain-specific
ASE effects (Figure 3A; Figure S5). fVars rs10734557,
rs1542321, and rs11039200 in the enhancer of SPI1, which
was primarily expressed in microglia and monocytes (9,15,43),
showed more prominent allelic imbalance in whole blood than
in the brain (Bonferroni-corrected p , .05) (Figure S5).

We further validated the allelic regulatory effects of 7 fVars
with significant ASE by using dual-luciferase reporter assays in
the commonly used HEK293T and U251 cell lines. Significantly
different activities were observed for 2 alleles of each fVar, and
the overall differential expression tendencies were consistent
with the ASE results (p , .05) (Figure 3B–F). Interestingly, fVars
in SPI1, i.e., rs1542321, rs11039200, and rs10734557, which
are fairly close and in strong LD [r2 . 0.95, European in-
dividuals (44)] with each other (Figure S6A), all showed
=

Figure 2. Systematic functional genomic study prioritized multiple potential fV
annotation for 24 potential fVars. Numbers in the 5th–12th columns represent t
number of distinct TF binding sites in which the target variant was located; the diff
by alternative alleles of target variants; bulk-tissue histone modification data of 8
(39,40) (H3K4me3, n = 28; H3K9ac, n = 12; H3K4me1, n = 24; H3K27ac, n = 18);
data are from neurons, astrocytes, microglia, and oligodendrocytes isolated fro
(ATAC, n = 29) are from 14 brain regions (91) and monocytes (92); scATAC data (n
of induced pluripotent stem cell–induced cortical excitatory neurons (46), induced
primary astrocytes (46), neurons (37), astrocytes (37), microglia (37), and oligoden
bulk brain eGenes are from the eMeta (6) and psychENCODE (23), microglia eGe
from Raj et al. (25) and Kim-Hellmuth et al. (26); fVars validated by ASE or lucife
potential fVars. The dot size is proportional to the number of potential fVars th
reference allele; ASE, allele-specific expression; ATAC, assay for transposase-acc
variants; ENCODE, Encyclopedia of DNA Elements; fVar, functional variant; GWA
block; Pos, chromosome position; scATAC, single-cell ATAC; SLB, short LD blo
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independent allelic-specific effects as revealed by the reporter
assays (Figure 3B). Considering potential cell type–specific
expression of eQTL genes at 11p11.2, we further tested ef-
fects of these SPI1 fVars using 2 human microglia cell lines,
HMC3 and HM. Independent effects were also observed for
these fVars, with a more profound effect for haplotype
rs1542321-G: rs11039200-C:rs10734557-A (Figure S6B, C).
Interestingly, the direction of differential expression was
opposite in microglia cell lines and HEK293T and U251 cells,
indicating cell type–specific effects of these fVars. We also
tested 4 potential fVars that were not captured by the ASE
data. Similarly, these fVars showed consistent allelic effects in
both HEK293T and U251 cell lines (Figure 3G–J). We
compared our results with the results of a recent study that
used massively parallel reporter assay (MPRA) to identify
regulatory variants for AD (45). Of 34 SNPs at 11p11.2 that
were captured by MPRA (Table S6) (45), 3 fVars (rs71475921,
rs7120548, and rs12223593) identified in this study had sig-
nificant allelic effects in MPRA (p , .05). Furthermore, the
allelic effects of rs2280231, rs71475921, and rs7120548 in
MPRA (45) were consistent with our luciferase reporter assays
(Figure 3E, I, J). Taken together, these results confirmed the
reliability of our fine-mapping strategy and the coexistence of
multiple fVars at 11p11.2.

Integration of eQTL and Chromatin Interaction Data
Assigned 17 Target Genes to Potential fVars at
11p11.2

Bulk brain, microglia, and monocyte eQTL datasets showed
that most potential fVars at 11p11.2 were linked with expres-
sion of multiple genes (eGenes for each SNP, Bonferroni-
corrected eQTL p , .05/35 genes within 61 Mb of 11p11.2
z 0.001) (Figure 2B). We integrated available chromatin
interaction data (high-throughput chromosome conformation
capture [HiC] and proximity ligation–assisted chromatin
immunoprecipitation sequencing data) of neurons (37,46), as-
trocytes (46), microglia (37), oligodendrocytes (37), and
monocytes (39,40) with eQTL data (6,23–26) to confirm the
regulation of eGenes by potential fVars. A total of 17 candidate
target genes (eQTL p , .001; HiC score . 3) were assigned to
24 potential fVars (Table S7). Fifteen of these genes had no cell
type–specific expression in the brain (Figure S7). SPI1 and
DDB2 (primarily expressed in microglia) (Figure S7) were spe-
cifically assigned as target genes of fVars with the monocyte
ars at 11p11.2. (A) A fine-mapping strategy for distilling fVars. (B) Detailed
he number of datasets supporting each term; the TFBS column shows the
TF column shows the number of TFs whose binding affinities were disrupted
brain regions, 6 types of neural cells, and monocytes are from the ENCODE
single-cell H3K4me3 (scH3K4me3, n = 4) and H3K27ac (scH3K27ac, n = 4)
m resected cortical brain tissues (37); bulk-tissue ATAC sequencing data
= 31) are from scATAC sequencing of 4 brain regions (36), ATAC sequencing
pluripotent stem cell–derived hippocampal dentate gyrus–like neurons (46),

drocytes (37); TFBS data are from the ENCODE (nTFs = 623, ndatasets = 1322);
nes are from the Microbial Genomes Atlas (24), and monocyte eGenes are
rase-reporter assays are labeled by a tick. (C) TFs disrupted by 2 or more
at disrupted TF binding. AD, Alzheimer’s disease; alt/ref, alternative allele/
essible chromatin; eGenes, expressional quantitative trait loci genes of target
S, genome-wide association study; LD, linkage disequilibrium; LLB, long LD
ck; SNP, single nucleotide polymorphism; TF, transcription factor.
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Figure 3. Allele-specific expression analyses and dual-luciferase reporter assays validated the coexistence of multiple fVars at 11p11.2. (A) fVars with significant
allele-specific expression (allelic imbalance) in all GTEx human tissues (27,28,42). Allele counts for the Ref allele and the Alt allele were plotted for each variant. Each dot
represents an individual sample and is colored by tissue. For each dot plot, the blue line represents a linear regression of all points, and the gray shade represents the
95% CI for the regression. p Values were measured by binomial tests. p Values , .007 after Bonferroni correction for the total number of comparisons (.05/7) are
marked by red asterisks (*). (B) Functional annotation and dual-luciferase reporter assays for 3 SPI1 fVars in strong linkage disequilibrium. (Top panel) Regulatory
elements containing each fVar were represented by ChIP-seq of histone modifications of promoters (H3K4me3 and H3K9ac) and enhancers (H3K4me1 and H3K27ac)
(39,40), ATAC-seq (36,37,46,91,92), and ChIP-seq of representative TFs disrupted by fVars (39,40). (Bottom left panels) PWM of TFs whose binding affinities were
predicted to be disrupted by fVars. (Bottom right panels) Dual-luciferase reporter assays for fVars in HEK293T and U251 cells. (C–J) Functional annotation and dual-
luciferase reporter assays for each fVar. Top left, regulatory elements containing each potential fVar were represented by ChIP-seq of histone modifications of
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data (25,26). We found no microglia-specific target genes
(probably) because of the relatively small sample size of the
microglia eQTL datasets (24).

Excluding rs11038913 and rs74486166, each of the
remaining 22 potential fVars had more than one target gene. In
particular, SPI1 fVars rs1542321, rs11039200, and rs10734557
were assigned the largest number of target genes, e.g., SPI1,
MADD, MTCH2, and PSMC3. Among all candidate target
genes, MTCH2 and MADD interacted with the largest number
of potential fVars (Table S7). When a more stringent threshold
(eQTL p , 3.2 3 1026 and HiC score . 5) was used to assign
target genes to fVars, 9 genes were retained, supporting the
robustness of the pattern wherein most fVars at 11p11.2 are
linked to multiple eGenes (Table S7).

A Single fVar Regulated Multiple Genes Through
Chromatin Interactions

To validate whether a single fVar could regulate multiple
genes, we created cell clones carrying different genotypes of
fVars at 11p11.2 by using base editing (47). Among 7 ASE and
reporter assay–validated fVars (Figure 3A–F), rs2293577 and
rs2280231 were chosen because they were located in the
editing window of base editor ABE7.10 (47).

rs2293577 is in an enhancer within SLC39A13 (Figure 3D).
The effect C-allele of rs2293577 was associated with upregu-
lated expression of ACP2,MADD, PSMC3, FAM180B,MTCH2,
and FNBP4 and downregulated C1QTNF4 expression in brain
tissues (Figure 4A). It was also associated with PSMC3 in
microglia and with SPI1, C1QTNF4, and NUP160 in monocytes
(Table S7). Six of these eGenes interacted with rs2293577-
located enhancer by chromatin contacts (Figure 4B) (HiC
score. 3). We performed precise base editing for rs2293577 in
HEK293T cells and obtained single-cell–derived clones with
genotypes TT (reference genotype) and TC (Figure S8). Assay
for transposase-accessible chromatin sequencing and real-
time quantitative polymerase chain reaction were conducted
to test the regulatory effect of rs2293577 T.C on its potential
target genes. The results showed that C-allele of rs2293577 did
not affect the chromatin accessibility of the SLC39A13
enhancer (Figure 4C, D). Consistent with the eQTL data
(Figure 4A), all target genes of rs2293577 in cells with genotype
TC had higher chromatin accessibility and messenger RNA
(mRNA) levels than cells with TT, especially for ACP2 and
MTCH2 (Figure 4C–E), supporting the regulation of multiple
target genes by a single fVar, rs2293577.

Another fVar, rs2280231, which is in the bidirectional pro-
moter of KBTBD4 and NDUFS3 (Figure 3E), showed a similar
effect. The effect T-allele of rs2280231 was associated with
lower expression of MADD, MTCH2, and FNBP4 in brain tis-
sues (Figure 5A) and was associated with NUP160 in microglia
and monocytes (Table S7). MADD, MTCH2, and FNBP4 also
=

promoters and enhancers (39,40), ATAC-seq (36,37,46,91,92), and ChIP-seq of
affinity was predicted to be disrupted by an fVar; right, dual-luciferase reporter ass
were displayed on genome assembly hg19. For each fVar (B–J), the most signifi
representative of 3 independent experiments with similar results; bars represent m
replicates for U251 cells). p Values were calculated by two-sided Student’s t test
Values , .002 after Bonferroni correction for the total number of comparisons
transposase-accessible chromatin; ChIP-seq, chromatin immunoprecipitation seq
GTEx, Genotype-Tissue Expression; NS, not significant; PWM, position weight m
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had significant chromatin interactions with rs2280231
(Figure 5B). NUP160 interacted with rs2280231 in neurons and
astrocytes, but not microglia or monocytes, which may be due
to the insufficient capture of HiC of these 2 cells. Similarly,
HEK293T cells carrying reference genotype CC and edited
genotype CT of rs2280231 were obtained by precise base
editing (Figure S8). The chromatin accessibility of rs2280231-
located promoter was not altered (Figure 5C, D), while the
KBTBD4 mRNA level was significantly downregulated
(Figure 5E). Inconsistent with eQTL results (Figure 5A), the
chromatin accessibility and mRNA levels of MADD, FNBP4,
and NUP160 were significantly decreased in HEK293T cells
with genotype CT compared with that in HEK293T cells with
CC (Figure 5C–E).

Overall, these results provided additional evidence for the
coexistence of multiple fVars at 11p11.2 and that one fVar
could regulate multiple target genes.
The CFG Strategy Prioritized 6 Likely Causal Genes
in AD Pathogenesis at 11p11.2

Seventeen potential target genes were assigned to fVars
(Table S7); however, it is possible that only a small pro-
portion of these genes have a role in causing AD and that
others are the result of pleiotropy. Thus, we applied a CFG
strategy integrating multilines of AD-related evidence to
assess each gene’s relevance to AD (18,48,49). Evidence
from integrative analyses of AD GWASs and eQTL, single-
cell (50), or bulk brain (18) transcriptomes, epigenomes
(51), and proteomes (52) at different AD pathological stages
were considered. Six genes had more than 3 lines of evi-
dence supporting their involvement in AD (Table 1). Among
those genes, MTCH2 received the highest CFG score, fol-
lowed by ACP2 and NDUFS3. The previously established
causal gene SPI1 (9,15,16) had a relatively low CFG score
of 2. This was because most of the data used for CFG
analysis were collected from bulk brain tissues, which may
not be suitable for accurate quantification of genes that
were mainly expressed in microglia, e.g., SPI1. Except for
SPI1 (9), nearly all genes showed a consistently down-
regulated tendency in brains of patients with AD compared
with control brains at the single-cell level (Figure 6A;
Table S8), bulk brain mRNA level (Figure 6B; Table S9), and
epigenetic (H3K27ac, Figure 6C) and protein levels
(Figure 6D). These changes were consistent with the eQTL
effects of fVars at 11p11.2, in which upregulation of SPI1
but downregulation of other genes was associated with
increased AD risk (Table S7). Altogether, different levels of
omics data indicated that multiple genes at 11p11.2 were
likely to be involved in AD pathogenesis.
TFs disrupted by fVars (39,40); bottom left, PWM of the TF whose binding
ays for each fVar in HEK293T and U251 cells. Functional annotations in (B–J)
cantly disrupted PWMs are shown. The reporter assay results in (B–J) are
ean 6 SD (n = 6 biological replicates for HEK293T cells and n = 4 biological
, together with the t statistics (HEK293T cells, df = 10; U251 cells, df = 6). p
(.05/22) are marked by red asterisks (*). Alt, alternative; ATAC, assay for
uencing; DG, dentate gyrus; EBV, Epstein–Barr virus; fVar, functional variant;
atrix; Ref, reference; TF, transcription factor.
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Multiple Genes at 11p11.2 Affected AD-Related
Molecular Phenotypes

Likely causal genes at 11p11.2 were involved in different AD-
related pathways (18, 53–56), including energy metabolism
[NDUFS3 (57), MTCH2 (58–60), and C1QTNF4 (61,62)], auto-
phagy [ACP2 (63,64)], immunity [C1QTNF4 (61,62)], and
ubiquitination [PSMC3 (65)]. Knockout of most of these genes
caused AD-related pathologies (Table S10) (63,66,67). No
protein-protein interactions were observed among these genes
(68), and they had no cell type–specific expression in the brain
(Figure S7). Therefore, likely causal genes at 11p11.2 may be
involved in AD pathogenesis via different pathways, either
individually or synergistically.

Considering the fact that SNPs at 11p11.2 were nominally
associated with Ab42 levels in the cerebrospinal fluid
(Figure 1A), we knocked down or overexpressed 3 likely causal
genes that were frequently highlighted by previous studies, i.e.,
MADD (10–12), PSMC3 (2,11), and MTCH2 (2,12) (Figure 7A).
Specifically, knockdown of each of these 3 genes significantly
increased Ab42 levels in U251-APP cells (69,70), whereas
overexpression had opposite effects (Figure 7B). Expression
alterations of MADD and PSMC3 also affected the phosphor-
ylated tau (pTau-396) levels (Figure 7C). It is interesting that
disruption of these genes led to alterations of both Ab and
pTau levels, which could be affected by multiple processes
(53,71). For example, overexpression of PSMC3 significantly
decreased Ab42 and pTau levels, probably due to enhanced
function of proteasomes. Knockdown of MADD and MTCH2
had more profound effects on Ab42 levels than their over-
expression, suggesting different mechanisms of these genes in
contributing to AD pathogenesis (Figure 7B, C). All these re-
sults supported involvement of multiple genes at 11p11.2 in
AD pathogenesis. The exact mechanisms by which disruption
of genes with diverse molecular functions converge upon the
phenotype of increased Ab42 and pTau levels remain to be
elucidated.

DISCUSSION

Elucidating mechanisms underlying AD GWAS risk loci is
particularly challenging for loci of extended LD (33,34). Fine-
mapping strategies integrating association statistics (e.g.,
QTL) and epigenetic datasets have paved a critical step from
=

Figure 4. Functional variant rs2293577 regulated expression of multiple target
11p11.2. Brain eQTL data were taken from Qi et al. (6). Red dotted line represen
polymorphism (p , .05/35 genes), and eGenes are marked in red. (B) Multiple
immunoprecipitation sequencing datasets of histone modifications are from the
astrocytes (46), and monocytes (92), pc-HiC dataset of hippocampal DG-like neu
from public sources. Interactions with a score .3 (p , .001) are shown. eGene
Functional annotations are displayed on genome assembly hg19. (C) Chromatin
genes of this functional variant in HEK293T cells with different rs2293577 genotyp
of rs2293577 had 2 biological replicates for the ATAC-seq. Peaks were displayed
changes in (C). Each dot represents 1 biological replicate. Bars are presented as
statistics was based on df = 2 for all comparisons: SLC39A13-promoter, t = 1.23;
1.41; MTCH2, t = 6.30. (E) mRNA levels of rs2293577-located gene and its target
had 3 biological replicates. Bars are presented as mean 6 SD. p Values were calc
SLC39A13, t = 5.44; APC2, t = 8.34; MADD, t = 4.80; PSMC3, t = 5.53; MTCH2
comparisons (.05/5) are marked by red asterisks (*). ATAC, assay for transposase-
Encyclopedia of DNA Elements; eQTL, expressional quantitative trait loci; HiC, hig
pc-HiC, promoter capture HiC; PLAC-seq, proximity ligation–assisted chromatin
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identifying risk loci to pinpointing likely causal variants and
genes (2,3,7,9,11,37,72–74). However, the results for complex
GWAS loci tend to vary across studies, mainly due to intensive
LD, limited types, and sample sizes of integrated omics data-
sets. In this study, we focused on 11p11.2, a typically
complicated AD risk signal containing numerous highly corre-
lated SNPs and coexpressed genes. Although stepwise con-
ditional analysis (75–78) of GWASs (2–4) showed that there
might be only one statistically significant causal/association
signal at 11p11.2 (Figure S9), this signal cannot usually reflect
the number of biologically causal variants because it only
represents a combinatory pattern of potentially causal variants
(33,34). Biologically causal variants at 11p11.2 required further
functional fine-mapping and experimental investigations.

We took advantage of recent large-scale genetic, epige-
netic, transcriptomic, and proteomic datasets of brain tissues,
neural cells, and monocytes at the bulk-tissue or single-cell
level to enable the prioritization of potential fVars and genes.
Multiomic functional genomic study assisted by cellular vali-
dations prioritized and validated multiple potential fVars at
11p11.2. In addition to SPI1, 6 likely causal genes were iden-
tified. Our results suggested a “multiple causal genes at a
single locus” pattern for complex AD risk loci, which may
provide a novel framework toward the mechanistic interpre-
tation of genetic risk signals of AD and other complex
diseases.

The complexity of gene regulation at 11p11.2 has also been
reported in previous studies (2,7,10–13,74). For instance,
Karch et al. (7) identified several AD-associated eQTL genes at
11p11.2. They speculated that genes may act cooperatively to
modify AD risk, and a key regulator at 11p11.2 may influence
the expression of many other genes (7). Huang et al. (9) found
that downregulation of PU.1 (SPI1) by the protective haplotype
at 11p11.2 was responsible for a lower AD risk, and PU.1 may
be a key regulator of AD. Notably, SPI1 was mainly expressed
in microglia, but other genes at 11p11.2 had no apparent cell-
type–expression specificity in the brain (Figure S7) (50). PU.1
knockout in B cells had no obvious effects on expression of
eQTL genes at 11p11.2 (Figure S10) (79). These observations
provided no direct support for SPI1 as the single causal gene.
Recently, based on myeloid cell omics data, Novikova et al.
(11) found that expression ofMADD and NUP160 were likely to
be regulated by active enhancers at 11p11.2 and were causally
genes. (A) rs2293577 was associated with expression of multiple genes at
ts the Bonferroni-corrected threshold for eGenes of each single nucleotide
eGenes interacted with rs2293577 via chromatin interactions. Chromatin

ENCODE (39,40). ATAC-seq datasets of hippocampal DG-like neurons and
rons and astrocytes (46), and PLAC-seq dataset of microglia (37) were taken
s with significant chromatin interactions with rs2293577 are marked in red.
accessibility of active regulatory element–harboring rs2293577 and target
es. Coverage signals were normalized by CPM. Each genotype (TT and TC)
on genome assembly GRCh38. (D) Quantification of chromatin accessibility
mean 6 SD. p Values were calculated by two-sided Student’s t test. The t
SLC39A13-enhancer, t = 2.95; APC2, t = 42.50; MADD, t = 0.67; PSMC3, t =
genes in HEK293T cells with different rs2293577 genotypes. Each genotype
ulated by two-sided Student’s t test. For all comparisons, df = 4; t statistics:
, t = 4.30. p Values , .01 after Bonferroni correction for the total number of
accessible chromatin; CPM, counts per million; DG, dentate gyrus; ENCODE,
h-throughput chromosome conformation capture; mRNA, messenger RNA;
immunoprecipitation sequencing; UTR, untranslated region.
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Table 1. Convergent Functional Genomics Ranking of Candidate Target Genes of Potential Functional Variants at 11p11.2

Genes

Integrative Analyses,
GWAS 1 eQTL Early-Stage

mRNA Change

Late-Stage mRNA
Change

Epigenetic
Change

(H3K27ac)
Protein
Change

CFG
ScoreMetaXcan SMR Colocalized Single-Cell Bulk

MTCH2 U U U U U U U U 5

ACP2 U – U U U U U – 4

NDUFS3 U – – U U U – U 4

PSMC3 U – – U – U U – 4

C1QTNF4 U – U U – U U – 4

MADD U – – U – U U – 4

LRP4 U – – – – U U – 3

NUP160 – – – U U – – – 2

DDB2 – – – – – U U – 2

SPI1 U – U – – – U – 2

SLC39A13 U U – – – – – – 1

FAM180B U – – – – – – – 1

NR1H3 U – – – – – U – 2

PACSIN3 – – – – – – U – 1

FNBP4 – – – – – – – – 0

KBTBD4 – – – – – – – – 0

PTPMT1 – – – – – – – – 0

Colocalized: colocalized genes (PP.H4 . 0.7) as reported in Lopes et al. (24). Early-stage mRNA change: genes differentially expressed in AD patients with early-stage
pathology compared with control individuals based on single-cell RNA sequencing from Mathys et al. (50). Late-stage mRNA change: genes differentially expressed in AD
patients with late-stage pathology compared with control individuals. Single-cell dataset was taken from Mathys et al. (50); bulk brain tissue dataset was taken from Alzdata
[Xu et al. (18) and references therein]. Epigenetic change (H3K27ac): genes with significant H3K27ac change in patients with AD compared with control individuals based on
data reported by Marzi et al. (51). Protein change: proteins with significant change in patients with AD compared with control individuals based on data from Johnson et al.
(52). CFG score: 1 point was added if a gene had a significant result (U) in each of the 5 lines of evidence (the integrative analysis, early-stage mRNA change, late-stage
mRNA change, epigenetic change, and protein change). The sum of all lines of evidence resulted in a total CFG score ranging from 0 (no association) to 5 (the strongest
association).

AD, Alzheimer’s disease; CFG, convergent functional genomics; eQTL, expressional quantitative trait loci; GWAS, genome-wide association study; mRNA, messenger
RNA; SMR, summary-data-based Mendelian randomization.
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linked to AD risk. Chen et al. (13) found that AD risk SNPs may
coregulate several nearby genes rather than only the nearest
genes. These reports, together with our current findings, indi-
cate that multiple fVars and causal genes cofunction at
11p11.2. However, systematic functional assessments and
experimental validations are lacking to rule out the effects of
LD and gene coexpression. In this study, we validated the
coexistence of multiple fVars by functional genomics, reporter
assays, and base-editing experiments. We proved that each
fVar has a regulatory effect. One variant could regulate multiple
genes by chromatin contacts, as exemplified by base editing of
rs2293577 and rs2280231. Furthermore, CFG scoring and
gene-level assays confirmed that multiple genes at 11p11.2
=

Figure 5. Functional variant rs2280231 regulated expression of multiple targe
at 11p11.2. (B) Multiple eGenes of rs2280231 interacted with rs2280231 via
element–harboring rs2280231 and target genes of this functional variant in HEK29
accessibility changes in (C). HEK293T cells with genotype CC had 2 biological rep
parisons to calculate Student t test p values; t statistics: KBTBD4-NDUFS3, t = 1.96;
, .01 after Bonferroni correction for the total number of comparisons (.05/5) are mark
genes in HEK293T cells with different rs2280231 genotypes. Cells with genotype
replicates. The df = 7 for all comparisons to calculate Student t test p values; t statis
FNBP4, t = 3.17; NUP160, t = 2.66. p Values, .008 after Bonferroni correction for th
information can be found in the legend for Figure 4. CPM, counts per million; e
conformation capture; mRNA, messenger RNA; pc-HiC, promoter capture HiC; PLA
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were able to affect AD-related molecules. Thus, our study has
shown that multiple likely causal genes regulated by fVars,
rather than a single key regulator, accounted for AD risk at
11p11.2.

This multiple-causal-variant, multiple-causal-gene pattern
at a single locus was not restricted to 11p11.2 and may also be
applicable to other AD loci and complex diseases. For
example, recent studies reported several AD susceptible
coding and noncoding variants at the APOE locus (80–82).
Kikuchi et al. (73) found an enhancer variant at AD risk locus
7q22.1 connecting many eQTL genes via the CTCF-mediated
chromatin loops. For the hypertension risk locus Agtrap-Plod1,
knocking out each of the 5 genes at this locus affected
t genes. (A) rs2280231 was associated with expression of multiple genes
chromatin interactions. (C) Chromatin accessibility of active regulatory

3T cells with different rs2280231 genotypes. (D) Quantification of chromatin
licates, and genotype CT had 4 biological replicates. The df = 4 for all com-
MADD, t = 3.08;MTCH2, t = 0.26; FNBP4, t = 6.73; NUP160, t = 3.68. p Values
ed by red asterisks (*). (E)mRNA levels of rs2280231-located genes and target
CC had 3 biological replicates, and cells with genotype CT had 6 biological
tics: KBTBD4, t = 10.13; NDUFS3, t = 0.30; MADD, t = 4.16; MTCH2, t = 2.73;
e total number of comparisons (.05/6) are marked by red asterisks (*). Additional
QTL, expressional quantitative trait loci; HiC, high-throughput chromosome
C-seq, proximity ligation–assisted chromatin immunoprecipitation sequencing.
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Figure 6. Multilevel omics data supported an involvement of 6 genes at 11p11.2 in AD pathogenesis. (A, B) Differential expression of genes likely to be
involved in AD pathogenesis at 11p11.2. The single-cell (A) and bulk brain tissue (B) datasets are from public sources. For scRNA-seq (50), genes with false
discovery rate , .05 for both the two-sided Wilcoxon rank-sum test and the Poisson mixed-model test were regarded as statistically significant. For bulk brain
tissues (18), genes with false discovery rate , .05 based on the empirical Bayes method (t tests) are highlighted. *p , .05, **p , .01, ***p , .001. Original p
values in (A, B) are listed in Tables S8 and S9. (C) Differential acetylation (H3K27ac) of active regulatory elements of potentially causal genes in postmortem
entorhinal cortex tissues. AD, n = 24; CTL, n = 23. Peak and peak counts were based on a public dataset (51). For genes with multiple H3K27ac peaks, peaks
with p , .05 are shadowed in pink (top), and peak counts are presented in violin plots (bottom). Peaks are displayed on human genome assembly hg19. (D)
Alterations of protein level of 4 captured proteins in dorsolateral prefrontal cortex tissues. AD, n = 230; CTL, n = 91. The original data are from (52) and are
plotted. Lines in each violin plot in (C, D) represent the first, the median, and the third quartile, respectively. p Values in (C, D) were calculated by Student’s t
test (two-tailed), with t statistics in each figure section. A red asterisk (*) was placed before the p value if it was less than the Bonferroni-correction threshold: (C)
df = 45 for all comparisons, p , .005 (.05/11); for (D), df = 319 for all comparisons, p , .0125 (.05/4). AD, Alzheimer’s disease; CPM, counts per million; CTL,
control; scRNA-seq, single-cell RNA sequencing.
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hypertension-related endophenotypes (83). Similar results
were also observed for locus 3p21.1, which conferred risk for
schizophrenia and bipolar disorder (84). In the recent MPRA
study, Abell et al. (85) found multiple fVars in tight LD, and most
haplotypes showed additive effects. These studies represent
only the tip of the iceberg in terms of the complexity of com-
plex diseases, thereby dampening the enthusiasm for finding a
common target for intervention.

Conclusions

In summary, we identified 24 potential fVars and 6 genes that
are likely to be involved in AD pathogenesis at 11p11.2
(Figure 7D). Although multilevel omics data were integrated,
especially for epigenetic data that are relatively insusceptible
to LD and coexpression, gene-level analyses in the CFG may
be confounded by the strong gene coexpression due to
extended LD (86). Therefore, further in vitro and in vivo sys-
tematic functional evaluations (87–90) are necessary to confirm
the true causal variants and genes. Except for SPI1, the other 6
prioritized genes at 11p11.2 were ubiquitously expressed in all
brain cell types (Figure S7). Many unanswered questions, such
as whether these genes work together in the same cell type,
whether they each function within a specific cell type, or
whether they regulate each other through cell-cell interactions,
require further investigations. The deciphering of in-depth
regulatory and pathogenic mechanisms of multiple causal
variants and genes is needed to fully understand the un-
derpinnings of AD development.
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Supplementary Materials and Methods 

Functional genomic strategy for fine-mapping of potentially functional variants 

and likely causal genes at 11p11.2 

A regulatory functional variant (fVar) was defined as a genomic variant capable of 

modulating gene expression by affecting the binding of certain transcription factor 

(TF) to the active regulatory element (ARE) in which the variant was located. 

Multi-omics data at bulk brain tissue or single-cell level from brain tissues, neural 

cells, and monocytes were included for the fine-mapping of fVars. Alzheimer’s 

disease (AD)-associated single nucleotide polymorphisms (SNPs) from three recent 

large-scale AD genome-wide association studies (GWASs), the Lambert study (1), the 

Kunkle study (2), and the Jansen study (3) were initially subjected to the functional 

genomic analysis. Bulk brain tissue and monocyte histone modifications data 

(Chromatin Immunoprecipitation Sequencing, ChIP-seq) associated with active 

promoters and enhancers (H3K4me3, H3K9ac, H3K4me1 and H3K27ac) (4, 5), and 

open chromatin data (Assay for Transposase-Accessible Chromatin using sequencing, 

ATAC-seq) (6, 7) were integrated to identify SNPs located within AREs. Single-cell 

ChIP-seq (8) and ATAC-seq (8-10) data for different neural cells (including neurons, 

astrocytes, microglia, and oligodendrocytes) were also used to identify SNPs that may 

have a function in certain types of neural cells, especially microglia. ChIP-seq data of 

623 TFs (4, 5) and the atSNP algorithm (11) were applied to further test whether 

SNPs within the AREs were able to affect the binding affinities of TFs to the AREs. 

Allelic effects of potential fVars were confirmed by allele imbalance analysis, 

dual-luciferase reporter assays, and base-editing. 

We defined target gene of an fVar on basis of two criteria. First, its expression is 

associated with that fVar (eGene). Second, that gene has direct chromatin interactions 
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with the ARE in which the fVar is located. We integrated expressional quantitative 

trait loci (eQTL) datasets of bulk brain tissue (12, 13), microglia (14), and monocytes 

(15, 16) with chromatin interaction data of neurons (8, 10), astrocytes (10), 

oligodendrocytes (8), microglia (8), and monocytes (4, 5), respectively. 

The convergent functional genomics (CFG) strategy (17, 18), which incorporated 

multiple lines of AD-related evidence, was used to assess a gene’s relevance to AD 

pathogenesis (17, 19, 20). Briefly, one point was assigned if the target gene: i) was 

predicted to be the causal gene by integrative analyses of AD GWAS and eQTL 

datasets (14, 21, 22); ii) was differentially expressed at the early stage or at the late 

stage of AD at the single-cell (23) or bulk brain level (17); iii) was differentially 

acetylated (H3K27ac) (24), or iv) had a differential protein level (25) in AD patients 

compared to controls. The sum of all lines of evidence (the integrative analysis, 

early-stage mRNA change, late-stage mRNA change, epigenetic change, and protein 

change) resulted in a total CFG score ranging from 0 (no association) to 5 (the 

strongest association). Genes with CFG > 3 were considered to be more likely to be 

involved in AD pathogenesis. The effects of prioritized genes on AD-related 

molecular phenotypes were further confirmed by cell assays. 

 

AD GWASs 

The three recent large-scale AD GWASs, i.e. the Lambert study (1), the Kunkle study 

(2), and the Jansen study (3) were included for fine-mapping the AD-associated SNPs 

at 11p11.2. The Lambert study included 17,008 AD patients and 37,154 controls 

(Nsnps = 7,055,881) (1). The Kunkle study (2) had an updated dataset of the Lambert 

study (1), with 17 newly added sample datasets, which resulted in 21,982 AD patients 

and 41,944 controls (Nsnps = 36,648,992) (2). The Jansen study (3) was based on 
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clinical diagnosed AD patients and individuals with one or two parents with AD 

(AD-by-proxy). The Phase 3 of the Jansen study (3) was a meta-analysis of stage 1 

data from the Lambert study (N = 54,162) (1), AD GWAS data of the Psychiatric 

Genomics Consortium (PGC, N = 17,477), whole-exome sequencing (WES) data of 

the Alzheimer’s Disease Sequencing Project (ADSP, N = 7,506), and GWAS data of 

AD-by-proxy subjects and controls from the UK Biobank (N = 376,113). A total of 

13,367,299 variants were genotyped or imputed in the Jansen study (3).  

For association analysis of AD endophenotypes including age-at-onset of AD and 

β-amyloid 42 (Aβ42) level in cerebrospinal fluid (CSF), we used two reported datasets 

(26, 27). Briefly, the GWAS of age-at-onset of AD included 14,406 AD patients and 

25,849 controls (Nsnps = 8,253,925) (26). The GWAS data of amyloid beta (Aβ42), 

tau, and phosphorylated tau (pTau-181) levels in CSF were conducted with 3146 

subjects, and had 7,358,575 variants for analyses (27). Considering the fact that the 

sample size for GWAS of AD endophenotypes including Aβ42 level in CSF (N=3146) 

was relatively small for achieving a robust statistical power, we arbitrarily used a 

loose threshold (P < 0.001) to define the association of 11p11.2 with AD 

endophenotypes. 

 

Assignment of AD-associated SNPs at 11p11.2 

Summary statistics from the Lambert study (stage 1 data) (1), the Kunkle study (2) 

(stage 1 data), and the Jansen study (3) were used to identify the AD-associated SNPs 

at 11p11.2. As the significant level is affected by sample size under study, some 

suggestively or marginally significant SNPs in a single GWAS report can achieve a 

genome-wide significance (P < 5 x 10-8) with increased sample size in further GWASs 

or meta-analyses. This has been testified by many large-scale meta-analyses of AD (2, 
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3) and other complex diseases (28-30). There is a high likelihood that these suggestive 

SNPs may also be biologically functional and relevant to AD, albeit with minor 

effects (31). Therefore, in order to maximize the coverage of subsequent functional 

mapping with an acceptable statistical credibility and to capture as many potentially 

risk SNPs as possible, we used a relatively moderate GWAS P cutoff (P < 1 x 10-5, 

which was also used by others (32, 33) to distill candidate AD risk SNPs at 11p11.2. 

The false discovery rate (FDR) corresponding to the chosen P < 1 x 10-5 threshold is 

1x10-5 x 4049 SNPs at 11p11.2 = 0.04. SNPs with a minor allele frequency (MAF) > 

0.01 and reached a suggestive genome-wide significance (P < 1x10-5) (32, 33), and 

SNPs that were in tight linkage (r2 > 0.8) with the above SNPs at 11p11.2 (chr11: 46.5 

megabases [Mb]-48 Mb, hg19) were extracted from the three GWASs (1-3). 

Genotype data from the 1000 Genomes project Phase 3 (503 European individuals 

[EUR]) (34) were used to compute the linkage disequilibrium (LD) among the 

variants at 11p11.2. The SNPs from all three studies (1-3) were combined, and a total 

of 452 AD-associated SNPs were obtained for 11p11.2 (Supplementary Table S2). 

The effects of SNPs across the three studies (1-3) were checked and SNPs with 

inconsistent effects were discarded. We conducted gene-based annotations of these 

452 SNPs by using ANNOVAR (35). The Combined Annotation Dependent 

Depletion (CADD) database (https://cadd.gs.washington.edu/) was used to evaluate 

the deleteriousness of missense variants (36). 

 

Detection of LD blocks (LBs) at 11p11.2 

LD-based clumping of GWAS summary statistics at 11p11.2 from the Lambert study 

(1) were conducted to detect LBs using Plink v1.9 (www.cog-genomics.org/plink/1.9/) 

(37). Genotyping data of 503 EUR individuals from the 1000 Genomes Project (phase 

http://www.cog-genomics.org/plink/1.9/
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3) (34) were used as the reference. The significance threshold for index SNPs was 

arbitrarily set as 1x10-5 (--clump-p1 1x10-5). The SNPs that were located within ±1 

Mb (--clump-kb 1000) from the index SNP and in tight linkage (--clump-r2 0.8) with 

the index SNP were identified.  

As defining LD blocks is quite challenging, we also used R package bigLD (38) 

to detect LD blocks at 11p11.2 using the 1000 Genomes EUR genotyping data (34) 

and compared with the LBs detected by using Plink v1.9 (37). The threshold for the 

correlation value |r| was set to 0.9 for bigLD (38), corresponding to r2 > 0.8 that was 

used in Plink v1.9 (37). 

 

QTL data of bulk brain tissues, microglia, and monocyte 

For bulk brain eQTL data, we used the eMeta dataset (12) and the PsychENCODE 

dataset (13). The eMeta dataset was a meta-analysis (12) of bulk brain eQTL data 

from the Genotype-Tissue Expression (GTEx) project (39, 40), the CommonMind 

Consortium (CMC) (41), and the Religious Orders Study and Memory and Aging 

Project (ROSMAP) (42), with an effective sample size of 1194. The PsychENCODE 

dataset had 1387 postmortem prefrontal cortex samples (13). Microglia eQTL dataset 

was taken from the Microglia Genomic Atlas (MiGA, n = 216), which contains 216 

primary human microglia samples isolated from medial frontal gyrus, superior 

temporal gyrus, subventricular zone, and thalamus of 90 subjects with neurological 

and psychiatric diseases, as well as unaffected subjects (14). We downloaded the 

results of meta-analysis (fixed effects) across different brain regions (14). The 

monocyte eQTL data were taken from Raj et al. (16) (N=461) and Kim-Hellmuth et al. 

(15) (N=134). Only cis-eQTL, i.e., SNPs within ±1 Mb from the gene transcriptional 

start site (TSS) or transcriptional end site (TES) were included. When referring to 
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significant eQTL genes for all SNPs at 11p11.2, we used a P threshold that was 

corrected by the total number of SNPs and genes within ±1Mb of 11p11.2 (P < 

0.05/35 genes/452 SNPs = 3.2x10-6). For eGene of a single SNP, we used an eQTL P 

threshold corrected by the total number of genes (P < 0.05/35 genes ≈ 1x10-3). 

 

Transcriptome-wide association study (TWAS) of eQTL and AD GWASs 

We performed TWAS to infer potentially causal genes at 11p11.2. Two algorithms, i.e. 

MetaXcan (21) and SMR (22), were used in this study. The SMR (22) and MetaXcan 

(21) analyses need the reference eQTL panels, which were constructed by genotype 

and expression data. It is ideal that the TWAS could be repeated with microglial or 

monocyte reference panels. However, the available datasets for monocytes and 

microglia contained no such information. Therefore, we performed the SMR and 

MetaXcan analyses with the reference eQTL panels of whole blood and bulk brain 

tissues, respectively. In brief, summary statistics from the three GWASs (the Lambert 

study (1), the Kunkle study (2), and the Jansen study (3)) at 11p11.2 were integrated 

with eQTL datasets of different brain regions from the GTEx project (39, 40) and of 

peripheral blood (43, 44). Thirteen GTEx brain regions and nervous tissues, including 

amygdala (N = 100), anterior cingulate cortex (BA24) (N = 121), caudate (N = 160), 

cerebellar hemisphere (N = 136), cerebellum (N = 173), cortex (N = 158), frontal 

cortex (BA9) (N = 129), hippocampus (N = 123), hypothalamus (N = 121), nucleus 

accumbens (N = 147), putamen (N = 124), spinal cord (cervical c-1) (N = 91), and 

substantia nigra (N = 88), were included for analyses.  

For MetaXcan analyses (21), pre-calculated databases for Depression Genes and 

Network’s (DGN) whole blood (N = 922) (43) and GTEx were downloaded from the 

PredictDB Data Repository (http://predictdb.org/) (45). For SMR analyses (22), we 

http://predictdb.org/


8 

downloaded peripheral blood (N = 2765) (44) and GTEx eQTL data from the SMR 

website (http://cnsgenomics.com/software/smr/#eQTLsummarydata) (22). The 

significant threshold values were set as Bonferroni-corrected P < 1x10-4 for the 

MetaXcan analyses (14 tested tissues and 35 genes within ±1 Mb of 11p11.2 captured 

in eQTL datasets), and as PSMR < 1x10-4 (Bonferroni-corrected) and PHEIDI > 0.05 for 

the SMR analyses, respectively. 

We compared our TWAS results with colocalization results reported by Lopes et 

al. (14) for cross validation. We obtained the results of colocalization analyses from 

Lopes et al. (14), which integrated eQTL data of bulk brain, monocyte, and microglia 

with AD GWASs (Ref. (14) and references therein). Genes with PP.H4 > 0.7 were 

considered to be colocalized. The detailed information regarding colocalization 

analyses can be found in the original publication (14). 

 

Histone modification data of brain tissues, neural cells, and monocytes 

ChIP-seq data for histone modifications related to active promoters (H3K4me3 and 

H3K9ac) (46), enhancers (H3K4me1 and H3K27ac) (47), and repressors (H3K27me3) 

(48) for eight brain regions (layer of hippocampus, temporal lobe, angular gyrus, 

caudate nucleus, cingulate gyrus, middle frontal area 46, substantia nigra, and 

embryonic brain) and six neural cells (astrocyte, bipolar neuron, neural cell, neural 

stem progenitor cell, neuron, and radial glial cell) were downloaded from the 

Encyclopedia of DNA Elements (ENCODE) (https://www.encodeproject.org) 

(Supplementary Table S1) (4, 5). Histone modification data for monocytes were also 

included for analysis in consideration of its critical role in AD (26). H3K4me3 and 

H3K27ac ChIP-seq peak files for neurons (NEUN+), astrocytes (NEUNneg LHX2+), 

microglia (PU.1+), and oligodendrocytes (OLIG2+) isolated from resected cortical 

http://cnsgenomics.com/software/smr/#eQTLsummarydata
https://www.encodeproject.org/
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brain tissues (N = 6) (8) were obtained from the UCSC 

(https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19). Peak files in 

bed format were obtained, and a FDR < 0.001 was applied to obtain relatively reliable 

peaks (49). 

 

ATAC-seq data of bulk brain tissues, neural cells, and monocytes 

ATAC-seq peaks of induced pluripotent stem cell (iPSC)-induced excitatory neurons, 

iPSC-derived hippocampal dentate gyrus (DG)-like neurons, and primary fetal 

astrocytes were downloaded from Gene Expression Omnibus (GEO, 

https://www.ncbi.nlm.nih.gov/geo/), with accession number GSE113483 (10). The 

ATAC peaks of neuron and glia cells from 14 brain regions were downloaded from 

the Brain Open Chromatin Atlas (BOCA, http://icahn.mssm.edu/boca) (6). The 

ATAC-seq of monocytes was downloaded from the GEO database with accession 

number GSE87218 (7). ATAC-seq peak files for neurons (NEUN+), astrocytes 

(NEUNneg LHX2+), microglia (PU.1+), and oligodendrocytes (OLIG2+) isolated 

from resected cortical brain tissues (N = 6) (8) were obtained from the UCSC browser 

(https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19). Single-cell 

ATAC-seq (scATAC-seq) data of isocortex (N = 3), striatum (N = 3), hippocampus (N 

= 2), and substantia nigra (N = 2), were downloaded from the GEO with accession 

number GSE147672 (9). A FDR < 0.001 was applied to filter ATAC peaks. 

 

ChIP-seq of transcription factors (TFs) and differential TF binding analyses 

To identify variants located in TF binding sites (TFBS), a total of 1,322 ChIP-seq 

datasets for 623 TFs were downloaded from the ENCODE database (Supplementary 

Table S1) (4, 5). Among these ChIP-seq datasets, only 37 datasets for 23 TFs were 

https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19
https://www.ncbi.nlm.nih.gov/geo/
https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19
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collected from AD-related tissues or cells. These AD-related datasets had an 

insufficient coverage for the entire TFs. To remedy this limitation, we used the GTEx 

database (39, 40) to evaluate the expression levels of TFs in brain tissues. As we 

found that about 91% of TFs (565 out of 623 TFs with transcripts per million (TPM) > 

1) are expressed in brain tissues (Supplementary Figure S11), we used ChIP-seq 

data of all TFs from all available tissues and cells for the subsequent TF binding 

analysis in order to achieve a higher coverage. 

DNA sequences of the top 1000 peaks (ranked by peak height in bed files) for 

each TF were subjected to the motif-based sequence analysis tool MEME 

(https://meme-suite.org/meme/) (50) to predict the DNA binding motifs (position 

weight matrix, PWM) (-mod zoops -nmotifs 3 -minw 6 -maxw 30). Top 3 PWMs with 

the smallest E-values for each TF were subjected to R package atSNP (11) to predict 

whether different alleles of certain variant within the TFBS could affect binding 

affinities of this TF. A variant was considered to disrupt the TF binding affinity if 

DNA sequence with reference allele (P_ref < 0.05) or alternative allele (P_alt < 0.05) 

of this variant was able to bind to the target TF, and their binding affinities were 

significantly different (P_rank < 0.05) (11). 

 

Functional genomic fine-mapping of potential fVars 

To decide whether the target SNP was located in any potential regulatory elements 

(promoter or enhancer), open chromatin, or TFBS, peaks of histone modification, TFs, 

and ATAC-seq were intersected with 452 AD-associated SNPs, respectively, using 

bedtools (51). A SNP was considered to locate in ARE if it was overlapped with the 

histone modification peaks and the open chromatin peaks (ATAC-seq) at the same 

time. If an ARE SNP was also located in the binding peak of a TF, and was also able 

https://meme-suite.org/meme/
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to affect the binding affinity of this TF to the peak, which was predicted by the atSNP 

algorithm (11), the SNP was regarded as a potentially fVar. 

 

Allele specific expression (ASE) analyses 

ASE measures allelic imbalance during transcription, which reflects the expression 

regulation activity of certain variant (39). We used ASE data for 53 tissues from the 

GTEx (phs000424.v7.p2) (39, 40, 52) to verify the cis-regulatory effects of candidate 

fVars. Only SNPs that were heterozygous in GTEx individuals and were captured by 

RNA sequencing (RNA-seq) were suitable for the ASE analyses. Among the 24 fVars 

identified in the above analyses, only 12 variants met this criterion for the ASE 

analyses. As it was unable to draw meaningful conclusions for variants with relatively 

low capture rates, we only included variants that were detected in > 10 samples in the 

ASE analysis. Binomial tests were used to test if the ratio of the two alleles of target 

variant was significantly different from the expectation (52). ASE analyses were 

performed by using a pooled data of all GTEx tissues, brain tissues only, and whole 

blood (39, 40, 52), respectively. 

 

Cell lines and cell culture 

HEK293T cells, U251 cells, human microglia HMC3 cells, and HM cells were 

obtained from Kunming Cell Bank, Kunming Institute of Zoology. HEK293T cells 

and HM cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; 

Gibco-BRL, 11965-092). U251 cells were cultured in Roswell RPMI-1640 medium 

(Gibco-BRL, C11875500BT). HMC3 cells were cultured in MEM medium (Procell, 

PM150410). All culture media were supplemented with 10% fetal bovine serum (FBS, 
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Gibco-BRL, 10099-141), 100 U/mL penicillin and 100 mg/mL streptomycin. Cells 

were cultured at 37 °C in a humidified atmosphere incubator with 5% CO2. 

 

Vector construction and dual-luciferase reporter assays 

The DNA fragments containing the target SNPs were amplified from in-house human 

DNA samples (20, 53) (Supplementary Table S11). A DNA fragment containing 

rs1542321, rs11039200, and rs10734557 was commercially synthesized (Tsingke 

Biotechnology Co. Ltd., Nanjing, China). The DNA fragments were inserted into the 

pGL3-basic (Promega, for promoter assays) or pGL3-promoter (Promega, for 

enhancer assays) luciferase reporter vector. PCR-mediated point mutagenesis was 

used to generate DNA vectors containing the respective alleles of each target SNP 

(Supplementary Table S11). All inserted DNA fragments were verified by Sanger 

sequencing. 

We validated the allelic regulatory effects by using dual-luciferase reporter assays, 

which were performed in the above four cell lines. We used HEK293T cells and U251 

cells to test all 11 fVars (including 7 fVars with significant ASE and 4 fVars without 

ASE data). We chose these two cell lines based on two reasons. First, most genes at 

11p11.2 were ubiquitously expressed in different cells (Supplementary Figure S7). 

Second, most of active regulatory elements (AREs) containing fVars were also active 

in HEK293T and U251 cell lines (Supplementary Figure S12). For the three fVars 

(rs10734557, rs1542321 and rs11039200) in the enhancer of SPI1, which was 

primarily expressed in microglia and monocytes (26, 54, 55), we repeated luciferase 

reporter assays by using human microglia cell lines HMC3 and HM. 

HEK293T cells were grown in 48-well plates with six replicates for each vector. 

U251 cells were grown in 24-well plates with four replicates per vector. HMC3 and 
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HM cells were grown in 24-well plates with six replicates per vector. The pGL3 

vector (250 ng per well for the 48-well plate, and 500 ng per well for the 24-well plate) 

and the internal control vector phRL-TK (25 ng per well for the 48-well plate, and 50 

ng per well for the 24-well plate) were co-transfected into the cells. The X-tremeGene 

HP DNA transfection reagent (ROCHE, 6366236001) was used for transfection. 

HEK293T cells were harvested at 24 h post transfection, U251, HMC3, and HM cells 

were harvested at 48 h using passive lysis buffer (Promega). Luminoskan Ascent 

instrument (Thermo Fisher Scientific Inc.) was used to measure the firefly and Renilla 

luciferase activities with the Dual-Luciferase Reporter Assay System (Promega, 

E1910) following the manufacture’s instruction. 

 

Assign candidate target genes to potential fVars with chromatin interaction and 

eQTL data 

Promoter capture HiC (pc-HiC) data of iPSC-derived hippocampal DG-like neurons, 

iPSC-induced cortical excitatory neurons, and human primary fetal astrocytes were 

downloaded from the GEO database with accession number GSE113481 (10). 

Proximity ligation-assisted ChIP-seq (PLAC-seq) data of microglia, neurons and 

oligodendrocytes were obtained from the UCSC 

(https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19) (8). HiC data of 

CD14-positive monocyte were downloaded from the ENCODE (accession IDs: 

ENCSR236EYO and ENCSR444SKT) (4, 5). Consensus regulatory elements at 

11p11.2 were obtained by merging promoter and enhancer peaks from all histone 

modification datasets included in this study (Supplementary Table S1) (4, 5) with 

the mergePeaks function (http://homer.ucsd.edu/homer/ngs/mergePeaks.html, -d 

given). A gene was considered to interact with the potentially fVar if its promoter or 

https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19
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enhancer significantly interacted (interaction score > 3, corresponding to P < 0.001 

(10)) with the regulatory element containing the fVar. Bulk-brain eQTL were 

integrated with HiC data from all types of neural cells (neurons, astrocytes, microglia, 

and oligodendrocytes) to assign candidate target genes for potentially fVars. Microglia 

eQTL and microglia PLAC-seq, monocyte eQTL and monocyte HiC were integrated, 

respectively, to assign microglia-specific and monocyte-specific target genes for fVars. 

In order to obtain relatively reliable target genes for fVars, only a gene that physically 

interacted (chromatin interaction) and were expressionally associated (eGene) with 

the fVar at the same time was regarded as the target gene for the fVar. Because two 

different levels of data were applied to ensure the reliability, we thus used less 

stringent cutoffs for eGenes and chromatin interactions. We used an eQTL P<0.001 to 

define an eGene and a HiC score>3 (corresponded to P < 1x10-3) to define a 

significant chromatin interaction. In addition, more stringent cutoffs for eGenes (P < 

3.2x10-6) and chromatin interactions (HiC score > 5, corresponding to P < 1x10-5 (10)) 

were also applied. If an fVar was located in a gene, which was also labeled as the 

eGene of this particular fVar, we defined this gene as the target gene of this fVar. 

 

Cell-type expression specificity analyses 

Cell-type expression specificity of certain gene was tested using the scRNA-seq data 

from prefrontal cortex samples of AD patients (N = 24, including patients at the 

early-stage and the late-stage pathology) and controls (N = 24) (23). Cell-type 

specificity (i.e. proportion of total expression of a gene in one cell type compared to 

all other cell types) metric was calculated for certain gene using the 

generate.celltype.data function from the expression-weighted cell-type enrichment 

(EWCE) R package (56). 
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Base-editing of target variants 

Base-editing was used to generate precise point mutations in cellular DNA for the 

target variants. Guide RNAs (gRNAs) targeting to the genomic regions of the variants 

were designed (Supplementary Table S11), and were sub-cloned into the 

pGL3-U6-sgRNA-PGK-puromycin (57) (Addgene plasmid # 51133) plasmid. 

Constructs containing different gRNAs (500 ng per well for the 6-well plate) were 

co-transfected with pCMV-ABE7.10 (58) (2 μg per well for the 6-well plate, Addgene 

plasmid # 102919) into HEK293T cells by using LipofectamineTM 3000 (Thermo 

Fisher Scientific Inc.). Culture medium was changed daily with fresh medium 

supplemented with 2 μg/mL puromycin after transfection for 24 h, and cells were 

selected by puromycin for 5 days. Single cells resistant to puromycin were seeded in 

the 96-well plate and were cultured for 2-3 weeks to obtain single cell clones. For 

each clone, the target region was amplified and sequenced to confirm successful 

editing of the target variants. 

 

ATAC-seq library preparation and data analyses 

ATAC-seq libraries were prepared using the TruePrep® DNA Library Prep Kit 

(Vazyme, TD501) following the manufacturer’s instruction. Briefly, 1×105 HEK293T 

cells pellet was re-suspended in 50 μL of cold lysis buffer (Sigma-Aldrich, NUC101) 

to generate nuclei, followed by centrifuging at 500 ×g for 10 min at 4 oC to remove 

the supernatant. The nuclei pellet was immediately continued to transposition reaction 

with Tn5 transposome at 37 oC for 30 min and was purified using the KAPA Pure 

Beads (KAPA Biosystems, ks8002). The transposed DNA fragments were amplified 

following by 72 °C for 3 min, 98 °C for 30 sec, and 9 cycles (each cycle: 98 °C for 15 

sec, 60 °C for 30 sec and 72 °C for 30 sec), followed by a final incubation at 72 °C for 
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5 min. The amplified PCR products were purified using the KAPA Pure Beads to get 

the ATAC-Seq libraries. Library qualities were assessed by gel electrophoresis and 

Agilent 2100 Bioanalyzer. 

The ATAC-seq libraries were sequenced on the Novaseq 6000 platform, and 150 

bp paired-ends reads were generated. The ENCODE ATAC-seq pipeline 

(https://github.com/ENCODE-DCC/atac-seq-pipeline) (4, 5) with default settings was 

used for the quality control and processing of ATAC-seq data. Briefly, adaptors and 

low-quality reads were trimmed and the remaining reads were mapped to human 

reference genome (GRCh38). PCR duplicates and reads mapping to mitochondrial 

DNA were filtered. Narrow peaks were called and peaks within blacklist regions 

(https://storage.googleapis.com/encode-pipeline-genome-data/hg38/hg38.blacklist.bed

.gz) were discarded. Peaks called from different samples were merged by the 

mergePeaks function from the HOMER tool set 

(http://homer.ucsd.edu/homer/ngs/mergePeaks.html). The maximum distance between 

peak centers to merge was set as 1000 bp. Consensus peaks were obtained by 

extracting peaks detected in at least 3 samples. Read counts for all consensus peaks 

were quantified by featureCounts (59) and were normalized by counts per million 

(CPM) by the calculateCPM function in R package scater (60), with adjustment of 

library size for each sample. For visualization, coverage of peaks was normalized 

using CPM in the bamCoverage function (binsize = 10) in deeptools (61). 

 

Real-time quantitative PCR (RT-qPCR) 

Total RNA was extracted by using the RNAeasy kit (TIANGEN Biotech Co. Ltd., 

Beijing, China) according to the manufacturer’s instructions. The quality of total RNA 

was measured on a NanoDrop biophotometer (Thermo Fisher Scientific Inc.). Total 
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RNA (1 μg) was used to synthesize cDNA by using oligo-dT18 primer and Moloney 

murine leukemia virus reverse transcriptase (M1701, Promega). The RT-qPCR was 

performed using iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories, 

172-5125) and the gene-specific primer pairs (Supplementary Table S11) on a CFX 

Connect Real-Time PCR Detection System (Bio-Rad Laboratories). The ACTB 

transcript was used for normalizing the expression of each target gene. 

 

Brain transcriptomic, epigenomic, and proteomic data of AD patients and 

controls 

Bulk brain tissue mRNA expression data of AD patients and controls were obtained 

from our previous study (AlzData: www.alzdata.org) ((17) and references therein). In 

brief, renormalized expression data for four brain regions were included, including the 

entorhinal cortex (EC, NAD = 39, Ncontrol = 39), hippocampus (HP, NAD = 74, 

Ncontrol = 65), frontal cortex (FC, NAD = 104, Ncontrol = 128), and temporal cortex 

(TC, NAD = 52, Ncontrol = 39). A gene with Benjamini-Hochberg’s (BH) adjusted P 

(FDR) < 0.05 was considered as the differential expressed gene (DEG) in AD patients 

compared to controls. Single cell RNA sequencing (scRNA-seq) data from prefrontal 

cortex of AD patients and controls were taken from Mathys et al. (23). Briefly, a total 

of 15 AD patients with early-stage pathology, 9 AD patients with late-stage pathology, 

and 24 controls were included in this study. Genes with a FDR < 0.05 in both the 

two-sided Wilcoxon rank-sum test and the Poisson mixed-model test were defined as 

DEGs at the single-cell level (23). Raw H3K27ac count data in postmortem EC 

samples from 24 AD patients and 23 controls were downloaded from the GEO 

database with accession number GSE102538 (24). Counts were normalized by CPM 

using the calculateCPM function in R package scater (60). The H3K27ac levels for 

http://www.alzdata.org/
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each regulatory element in AD and controls were compared by using the Student’s t 

test. Peak files for visualization were downloaded from 

https://epigenetics.essex.ac.uk/AD_H3K27ac/ (24). The protein abundance data for 

dorsolateral prefrontal cortex from 91 controls and 230 AD patients were obtained 

from the original proteomic study (25). The differences of H3K27ac levels and 

protein abundance between AD patients and controls were compared using the 

Student’s t test. 

 

Knockdown or overexpression of likely causal genes 

U251 cells with a stable expression of mutant APP constructed in our previous studies 

(U251-APP cells) (62, 63), were used to test the effect of expressional change of 

target gene on Aβ42 and pTau (pTau396) levels. For knockdown assay, siRNA of each 

gene (20 nM per well for the 6-well plate) was transfected into cells by using 

LipofectamineTM 3000 (Thermo Fisher Scientific Inc.). For overexpression assay, 

expression vector of target gene (2 μg per well for the 6-well plate) was transfected by 

using the X-tremeGene HP DNA transfection reagent (ROCHE, 6366236001). After 

transfection for 24 h, culture supernatant in each well was replaced with equal volume 

of fresh growth medium, and 1 μg/mL doxycycline (Sigma, D9891) was added to 

induce APP expression. Cells and culture supernatant were harvested at 72 h after 

transfection. 

 

Western blot and enzyme-linked immunosorbent assay (ELISA) 

Cells were lysed by protein lysis buffer (Beyotime, P0013) on ice and were 

centrifuged at 12 000 ×g at 4 °C for 10 min to remove cell debris. Protein 

concentration was determined using a BCA Protein Assay Kit (Beyotime, P0012). A 
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total of 20 μg protein was separated by 12% (vol/vol) sodium dodecyl sulphate 

(SDS)-polyacrylamide gel and electrophoretically transferred to a polyvinylidene 

difluoride membrane (Bio-Rad Laboratories, L1620177). The membranes were 

soaked with 5% (w/v) skim milk for 2 h at room temperature, and were incubated 

with the primary antibodies against MADD (1:1000; abcam, ab134117), MTCH2 

(1:1000; absin, abs143485), PSMC3 (1:1000; abcam, ab171969), Flag (1:5000; 

Abmart, M20008), and Tubulin (1:20000; EnoGene, E1C601) overnight at 4 °C, 

respectively. After three washes with Tris-buffered saline with 0.1% Tween (TBST, 5 

min each), the membranes were incubated with the respective anti-mouse or 

anti-rabbit secondary antibody (1:10000, KPL, USA) for 1 h at room temperature. 

The membranes were visualized using enhanced chemiluminescence reagents 

(Millipore, WBKLS0500). 

The levels of Aβ40 (Elabscience, E-EL-H0542c) and Aβ42 (Elabscience, 

E-EL-H0543c) in culture supernatant, and phosphorylated tau (pTau-396, Elabscience, 

E-EL-H5314c) in cell lysate of U251-APP cells with different transfections were 

measured by using commercial ELISA kits. A total of 100 μL culture supernatant or 

cell lysate were used to perform the ELISA assays according to the manufacturer’s 

instructions, respectively. The protein level of Aβ42 and pTau-396 were further 

normalized by the total amount of protein of each sample. However, Aβ1-40 was 

undetectable in U251-APP cell line and was excluded in the subsequent analysis. 

 

Stepwise conditional analysis for 11p11.2 

A stepwise model selection procedure was performed by using GCTA-COJO (64, 65) 

to independently select AD-associated SNPs (--cojo-slct) at 11p11.2. Briefly, GWAS 

summary statistics from the Lambert study (1), the Kunkle study (2), and the Jansen 



20 

study (3) were used in the analysis. Genotype data from 4410 individuals from the 

Alzheimer’s Disease Genetics Consortium (ADGC, NG00032) (66) were used as a 

population reference. Because only SNPs with a genome-wide (P < 5x10-8) or 

suggestive genome-wide significance (P < 1x10-5) were used in this analysis, we set a 

loose P threshold for parameter (--cojo-p) for GWASs as 1x10-5. 

 

RNA-seq data of PU.1 knockout B cells 

The RNA-seq data of B cells from PU.1 (SPI1) knockout (KO) mice (n = 2) and 

wide-type controls (n = 2) were downloaded from the GEO with accession number 

GSE90094 (67). Fragments per kilobase of transcript per million mapped reads 

(FPKM) normalized expression for target genes were obtained, and expressional 

difference between PU.1 KO and control groups were analyzed by two-tailed 

Student’s t test. 

 

Statistical analysis and data visualization 

The Locuszoom (http://locuszoom.org/) (68) was used to visualize GWAS results. 

Functional annotations for target genomic regions were visualized using the WashU 

epigenome browser (http://epigenomegateway.wustl.edu/) (69) or the Integrative 

Genomics Viewer (IGV) (70). Network was visualized by using the Cytoscape v3.7.1 

(71). The comparisons of relative luciferase activities, mRNA levels, chromatin 

accessibility levels, or protein levels between two different groups were performed by 

using the PRISM software (GraphPad Software, Inc., La Jolla, CA, USA) with the 

Student’s t test. A P < 0.05 was considered to be statistically significant. We 

performed Bonferroni correction for multiple testing for P values whenever this 

correction should be applied. 
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Data availability 

Publically available data used in this study were listed in Supplementary Table S1. 

The ATAC-seq data generated in this study were available at GSA 

(https://ngdc.cncb.ac.cn/gsa/) under accession number HRA004084. Related results 

and codes were available at the Alzdata webserver 

(http://www.alzdata.org/file/11p11.2_related_data_and_scripts.rar).  



22 

Supplementary Figures 

 

 

 
Figure S1. Linkage disequilibrium (LD) blocks at 11p11.2 detected by the bigLD. 
LD detection was performed by the bigLD (38) based on genotype data of 503 
European individuals from the 1000 Genomes project (phase 3) (34). Each LD block 
(from B-1 to B-9) was represented by a different color. 
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Figure S2. AD-associated SNPs at 11p11.2 were associated with expression of 
multiple genes in prefrontal cortex. The eQTL data were taken from the 
psychENCODE dataset (13). eQTLs with P < 3.2x10-6 (Bonferroni-corrected) were 
shown. 
  



24 

 
 

Figure S3. AD-associated SNPs at 11p11.2 were associated with expression of 
multiple genes in monocytes. The Raj study, monocyte eQTL dataset from Raj et al. 
(16); The Kim-Hellmuth study, monocyte eQTL dataset from Kim-Hellmuth et al. 
(15); eQTLs with P < 3.2x10-6 (Bonferroni-corrected) were shown. 
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Figure S4. Potentially functional variants with a low capture rate by the GTEx 
ASE data (39, 40, 52). Allele counts for the reference (Ref) allele and the alternative 
(Alt) allele were plotted for each fVar. Each dot represented an individual sample, and 
was colored by tissue. As the capture rates of these variants were inadequate (i.e., 
were detected in very few samples) to draw meaningful conclusions, ASE P-values 
were not calculated for these variants. 
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Figure S5. ASE of potentially functional variants in GTEx brain tissues and 
blood (39, 40, 52). Allele counts for the reference (Ref) allele and the alternative (Alt) 
allele were plotted for each fVar. Each dot represented an individual sample, and was 
colored by tissue. P values were measured by binomial tests. P values < 0.005 after 
Bonferroni correction for the total number of comparisons (0.05/10) were marked 
with red asterisks (*). 
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Figure S6. Three SPI1 potential fVars showed individual and addictive effects in 
human microglia cell lines. (A) Linkage disequilibrium (LD) of three fVars in SPI1 
and their haplotypes. Result was performed by Haploview 4.1 (72) based on genotype 
data of 503 European individuals (EUR) from the 1000 Genomes project Phase 3 (34). 
r2 was used for the LD color scheme. Haplotypes with frequencies > 0.1 in EUR were 
shown. (B-C) Dual-luciferase reporter assays for the three SPI1 potential fVars and 
their common haplotypes in EUR using human microglia cell lines HMC3 (B) and 
HM (C) cells. Two common haplotypes of the three SPI1 fVars in EUR were marked 
in blue. Shown results were representative of three independent experiments with 
similar results. Bars represent mean ± SD (n = 6 biological replicates for HMC3 cells 
and HM cells, respectively). P values were calculated by two-sided Student’s t test, 
together with the t-statistics (the degrees of freedom (df) = 10). P values < 0.003 after 
Bonferroni correction for the total number of comparisons (0.05/16) were marked 
with red asterisks (*). 
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Figure S7. Cell-type expression specificity of eGenes of potentially functional 
variants at 11p11.2. Cell-type specificity for each gene was calculated using R 
package EWCE (56), based on single cell RNA-seq data from Mathys et al. (23) 
(frontal cortex, n = 48). Ast: astrocytes; End: endothelial cells; Ex: excitatory neurons; 
In: inhibitory neurons; Mic: microglia; Oli: oligodendrocytes; OPC: oligodendrocytes 
precursor cells; Per: pericytes. 
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Figure S8. Sanger sequencing validated a successful base-editing of rs2293577 (A) 
and rs2280231 (B) in HEK293T cells. The original HEK293T cell line has a 
genotype TT for rs2293577 (HEK293T-TT) and TC for rs2280231 (HEK293T-TC). 
We obtained HEK293T cell clones with genotypes TT (TT-clone) and TC (TC-clone) 
for rs2293577, and with genotypes TC (TC-clone 1 and TC-clone 2) and CC 
(CC-clone) for rs2280231, respectively. 
  

A
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Figure S9. GWAS association signals before and after the conditional analysis at 
11p11.2. Each panel showed the original GWAS association P values (green dots) and 
P values conditioned (orange dots) on the SNP selected by GCTA-COJO (64, 65) for 
each GWAS (the Lambert study (1), the Kunkle study (2), and the Jansen study (3)). 
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Figure S10. Expressional changes of eGenes at 11p11.2 in B cells isolated from 
PU.1 (SPI1) knockout mice (67). The P value was calculated by the Student's t test 
(two-tailed) to evaluate expressional difference of each gene between control and 
PU.1 KO cells. FPKM, fragments per kilobase of transcript per million mapped reads. 
LPS, lipopolysaccharide; Control, wide-type mice; PU.1 KO, PU.1 knockout mice; 
Bars represent mean ± SD. *, P < 0.05; **, P < 0.01.  
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Figure S11. Mean expression of TFs in GTEx brain tissues. Original RNA-seq data 
of bulk brain tissues were obtained from the GTEx (39, 40), and were normalized by 
transcription per million (TPM). 
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Figure S12. Open chromatin peaks in HEK293T and U251 cells at 11p11.2. 
Potentially functional variants (fVars) tested by the dual-luciferase reporter assays 
were marked in red. 
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