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Abstract

During the past decade, genetic studies of schizophrenia have become one of the most exciting and fast-moving areas.
Hundreds of genes implicated in schizophrenia have been identified by genetic, epigenetic, and gene expression studies.
However, how to systematically and efficiently use these published data to pinpoint the causal genes becomes a major
challenge in schizophrenia research. Here, we release an updated version of a comprehensive database for schizophrenia
research, SZDB2.0 (www.szdb.org), which accompanies significant data expansion and feature improvements, as well as
functionality optimization. Compared with the first version (SZDB), the current database has the following updates: (1) We
added the newly published genome-wide association study (GWAS) of schizophrenia from CLOZUK + PGC, which is the
largest GWAS for schizophrenia; (2) We included a polygenic risk score calculator; (3) In the refined “Gene” module of
SZDB2.0, we collated genetic, gene expression, methylation, and integrative results of all available schizophrenia studies;
(4) In the “CNV (copy number variation)”” module, we collated the results of all 77 CNV publications about schizophrenia;
(5) We also updated other data, including gene expression quantitative trait loci (eQTL), transcript QTL, methylation QTL,
and protein—protein interaction data, based on the information from the latest literatures. We optimized the query interface
of SZDB2.0 for a better visualization and data retrieval. The updated SZDB2.0 will advance the research of schizophrenia.

Introduction

Schizophrenia is a complex, heterogeneous behavioral and
cognitive syndrome with a heritability as high as to 80%,
almost the highest in all psychiatric disorders (Sullivan et al.
2012; Sullivan and Geschwind 2019). Genetics and gene
expression studies of schizophrenia have been accumulated
over 2 decades, how to efficiently use these published data
to elucidate the genetic basis of schizophrenia is a daunt-
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studies (GWASs), whole exome/genome sequencing (WES/
WGS), and copy-number variants (CNVs) studies have iden-
tified hundreds of risk genes associated with schizophre-
nia (Lam et al. 2019; Li et al. 2016; Marshall et al. 2017,
Pardifas et al. 2018; Purcell et al. 2014; Schizophrenia
Working Group of the Psychiatric Genomics Consortium
2014; Xu et al. 2012). In particular, during the past decade,
GWASSs [which use a case—control comparison of common
single-nucleotide polymorphisms (SNPs)] of schizophre-
nia have identified more than 200 genetic risk loci which
provided new insights into the pathobiology and genetic
architecture of schizophrenia (International Schizophrenia
Consortium et al. 2009; Lam et al. 2019; Li et al. 2017b;
O’Donovan et al. 2008; Pardifias et al. 2018; Ripke et al.
2013; Schizophrenia Working Group of the Psychiatric
Genomics Consortium 2014; Shi et al. 2011; Yue et al.
2011). In addition to GWASs, WGS and WES have also
identified risk-modifying, coding variations or de novo
mutations. It is estimated that de novo mutations accounted
for more than half of the sporadic cases of schizophrenia
(Xu et al. 2011). So far, WGS/WES analyses have identified
numerous de novo or rare mutations in schizophrenia cases
(Purcell et al. 2014; Takata et al. 2014; Tang et al. 2017,
Xu et al. 2012). Similarly, CNV studies revealed the pivotal
role of structural variants in schizophrenia (Li et al. 2016;
Malhotra and Sebat 2012; Marshall et al. 2017). Despite
the fact that genetic studies of schizophrenia have made a
significant progress in recent years, currently, there is no
one-to-one Mendelian mapping between these schizophrenia
risk alleles and diagnosis (Fromer et al. 2016). There is a
pressing need to bridge the gap between genetic studies and
mechanistic research.

Postmortem gene expression and methylation studies of
subjects with schizophrenia suggest subtle abnormalities in
multiple brain regions (Fromer et al. 2016; Hannon et al.
2016b; Jaffe et al. 2016). Hitherto, more than 50 expres-
sion studies of schizophrenia have been reported (Chen et al.
2013; Iwamoto et al. 2005; Lanz et al. 2015; Narayan et al.
2008), although the sample sizes of these studies were rela-
tively small, maybe explaining why limited gene set overlaps
were observed between these studies. Recently, two large-
scale studies, the CMC (https://www.synapse.org/) (Fromer
et al. 2016) and the PsychENCODE (https://resource.psych
encode.org/) (PsychEncode Consortium 2018), have identi-
fied numerous dysregulated genes in schizophrenia (Gandal
et al. 2018; Li et al. 2018b; Wang et al. 2018). The CMC and
the PsychENCODE consortia have generated comprehensive
online resources for schizophrenia research, including gene
expression and expression quantitative trait loci (eQTL). By
merging these data with the data from ENCODE (Encode
Project Consortium 2011) and Roadmap (Roadmap Epig-
enomics Consortium et al. 2015), genome-wide regulatory
maps and transcriptional profiles across spectra of cell and
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tissues have been established (Wang et al. 2018). These
resources provide important information for interpretation of
genetic variations implicated in schizophrenia in the context
of genes, regulation patterns, and the effects on biological
pathways (Sullivan and Geschwind 2019). Because these
resources are distributed in different platforms or places, it
is difficult and inconvenient for researchers to search, mine,
analyze, and integrate these data. Therefore, we developed
SZDB (Wu et al. 2017) in 2016 to fill this gap.

In this study, we updated SZDB to SZDB2.0 (www.szdb.
org). The SZDB2.0 contains various layers of data of schizo-
phrenia research, such as genetic data [GWASs (Pardifias
et al. 2018; Schizophrenia Working Group of the Psychiat-
ric Genomics Consortium 2014), CNVs’ data (77 published
schizophrenia CNV studies: www.szdb.org/cnv-publicatio
n.php), and WGS/WES data (14 published studies: www.
szdb.org/exome-publication.php)], gene expression data
[CMC (Fromer et al. 2016) and PsychENCODE (Wang et al.
2018)], functional genomics data (Huo et al. 2019), and pro-
tein—protein interaction data (Li et al. 2017a). The SZDB2.0
contains four modules: SNP module, Gene module, CNV
module, and Other module. By integrating different types of
data, we believe that the updated version of SZDB2.0 will
be a useful resource for schizophrenia research.

Methods
Genetic data

We collated GWAS data from two largest-scale studies so far
(Pardifias et al. 2018; Schizophrenia Working Group of the
Psychiatric Genomics Consortium 2014). The first study is
from the Psychiatric Genomics Consortium (PGC), which
reported a meta-analysis of schizophrenia genome-wide
association studies (PGC2 GWAS) (Schizophrenia Work-
ing Group of the Psychiatric Genomics Consortium 2014).
We downloaded the summary statistics data from the PGC
website (https://www.med.unc.edu), and genome-wide SNP
associations from 35,476 cases and 46,839 controls (Schizo-
phrenia Working Group of the Psychiatric Genomics Con-
sortium 2014) were included in SZDB2.0. The second study
is from a recent study by Pardifias and coworkers (Pardifias
et al. 2018), in which a meta-analysis of the CLOZUK and
independent PGC datasets (including 40,675 schizophrenia
cases and 64,643 controls) was conducted (Pardifias et al.
2018). We downloaded the summary statistics of this meta-
analysis from https://walters.psycm.cf.ac.uk/. Detailed infor-
mation about these two studies can be found in the original
publications (Pardifias et al. 2018; Schizophrenia Working
Group of the Psychiatric Genomics Consortium 2014).

We obtained the CNV results of schizophrenia by search-
ing PubMed (https://www.ncbi.nlm.nih.gov/m/pubmed/).
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We searched with keywords “CNV and schizophrenia” or
“copy number variants and schizophrenia” and focused on
studies published since 2006, as the analysis technique for
CNV was mature at that time. In total, 77 original de novo
CNV studies or case—control CNV studies of schizophrenia
(www.szdb.org/cnv-publication.php) were retained. The
detailed CNV information, including detection platform,
case/control number, CNV location, and CNV-affected
genes, from these studies were extracted and deposited in
SZDB2.0.

The WES/WGS enables the detection of rare or de novo
mutations at the exome or genome level. An increased “bur-
den” of rare and protein-altering genetic variations in schiz-
ophrenia cases had been reported (Genovese et al. 2016).
When collecting the variant data, we searched the PubMed
with the keywords “whole exome sequencing and schizo-
phrenia” or “whole genome sequencing and schizophrenia”.
The returned results were manually checked and examined.
In total, we collated WGS/WES results of schizophrenia
from 14 publications (www.szdb.org/exome-publicatio
n.php) which conducted WGS/WES. The predicted effects of
missense mutations were assessed using PolyPhen-2 (https://
genetics.bwh.harvard.edu/pph2/) (Adzhubei et al. 2010) and
SIFT (https://sift.bii.a-star.edu.sg/) (Ng and Henikoff 2003).

Functional genomic data

Most of genetic variants identified by schizophrenia GWASs
are located in non-coding regions, implying that these
variants may confer schizophrenia risk by regulating gene
expression (Dobbyn et al. 2018). Recently, we conducted
a functional genomics study to systematically investigate
the gene regulatory mechanisms underpinning schizophre-
nia risk through integrating data from functional genomics
and position weight matrix (Huo et al. 2019). A total of 132
schizophrenia GWAS risk SNPs that disrupt transcription
factor (TF)-binding sites were identified (Huo et al. 2019).
The binding motif of the corresponding TFs and the loca-
tions of identified TF binding-disrupting SNPs were depos-
ited in SZDB2.0.

Differentially expressed genes

Over 50 gene expression (based on case—control) studies of
schizophrenia have been reported (Chen et al. 2013; Iwa-
moto et al. 2005; Lanz et al. 2015; Narayan et al. 2008).
However, most of these studies only included limited sam-
ple sizes and the gene expression level was quantified by
microarray technology. RNA-sequencing (RNA-Seq), which
developed rapidly in the recent years, can more accurately
detect transcript levels and identify alternatively spliced
transcripts. Recently, the CMC, a public—private partner-
ship, reported one of the largest gene expression datasets

from the prefrontal cortex (PFC) of 258 schizophrenia cases
and 279 healthy controls using RNA-Seq (Fromer et al.
2016), and this dataset is regarded as one of the most repre-
sentative datasets in gene expression in schizophrenia. After
read mapping and quantification, the expression data matrix
was normalized and adjusted with covariates. Then, gene
expression was measured by log(CPM) (read counts per mil-
lion total reads). Gene expression was assessed using the
limma package in R (Ritchie et al. 2015). We downloaded
the expression summary data (including fold change and P
value) from CMC website (https://www.synapse.org/CMC)
(Fromer et al. 2016) and included these data into SZDB2.0
with permission.

Differentially methylated data

DNA methylation plays an important role in brain devel-
opment and is potentially important in schizophrenia (Jaffe
et al. 2016). The previous study has shown that develop-
mentally associated changes in DNA methylation were sig-
nificantly enriched for genomic regions that confer risk for
schizophrenia (Jaffe et al. 2016). In this update, we included
three large-scale DNA methylation studies from the PFC
(Jaffe et al. 2016; Numata et al. 2014; Wockner et al. 2014)
and peripheral blood (Hannon et al. 2016a; Kinoshita et al.
2014; Montano et al. 2016), respectively (Table 1). The
sample sizes included in these studies were relatively large,
which made the findings of these studies more reliable and
replicable. These differentially methylated regions in schizo-
phrenia cases and controls can be visualized and queried in
SZDB2.0.

QTL data

Considering the fact that most of the identified risk variants
were located in non-coding regions, the eQTL data are quite
useful to investigate the potential effects of the identified
risk variants (Albert and Kruglyak 2015; Guo et al. 2018).
Two large-scale eQTL studies were included in SZDB2.0
(Table 1). The first eQTL dataset is from the CMC, which
contains 2,154,331 significant cis-eQTL (at a false discovery
rate (FDR) <5%) from the PFC tissues of 467 European-
ancestry subjects (Fromer et al. 2016). We downloaded the
CMC eQTL data from https://www.synapse.org/CMC. The
second dataset is from the PsychENCODE Integrative Anal-
ysis (Wang et al. 2018), which contained adult brain PFC
eQTL data of 1,387 individuals from the PsychENCODE
(PsychEncode Consortium 2018) and the Genotype-Tissue
Expression (GTEX, https://www.gtexprotal.org) (GTEx Con-
sortium 2013). We downloaded the eQTL results that meet
the following two criteria: (i) false discovery rate < 0.05; (ii)
genes have an expression > 0.1 FPKM (fragments per kilo-
base per million mapped fragments) in at least ten samples
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Table 1 Data description of differential expression, differential methylation, and eQTL and meQTL datasets

Content Sample size Tissue Published year  Publication

Differential expression 258 SZ VS. 279 Ctrl DLPFC 2016 Fromer et al. (2016)

Differential methylation 191 SZ VS. 335 Ctrl PFC 2016 Jaffe et al. (2016)
106 SZ VS. 110 Ctrl DLPFC 2014 Numata et al. (2014)
24 SZ VS. 24 Ctrl PFC 2014 Wockner et al. (2014)
Stage 1: 689 SZ VS. 645 Ctrl; Stage 2: 247 SZ VS. 250 Ctrl PB 2016 Montano et al. (2016)
63 SZ VS. 42 Cul PB 2014 Kinoshita et al. (2014)
Stage 1: 353 SZ VS. 322 Ctrl; Stage 2: 414 SZ VS. 433 Cul; PB 2016 Hannon et al. (2016a)

Stage 3: 96 monozygotic twin pairs

eQTL 537 (258 SZ VS. 279 Ctrl) PFC 2016 Fromer et al. (2016)
1387 PFC 2018 Wang et al. (2018)

meQTL 166 Fetal brain 2016 Hannon et al. (2016b)
526 (191 SZ VS. 335 Ctrl) PFC 2016 Jaffe et al. (2016)

SZ schizophrenia cases, Ctrl health controls, DLPFC the dorsolateral prefrontal cortex, PFC the prefrontal cortex, PB peripheral blood

from the PsychENCODE Integrative Analysis website (https
:/lresource.psychencode.org/) (Wang et al. 2018). In fact,
these two datasets were the most representative data sets
in dissecting the relationships between genetic variants and
gene expression in human brain. We also downloaded the
transcript quantitative trait loci (tQTL) data from these two
studies (Fromer et al. 2016; Wang et al. 2018).

In addition to eQTL, methylation quantitative trait loci
(meQTL) data were also included in SZDB2.0. DNA meth-
ylation is important for epigenetic regulation of gene expres-
sion and development (Jaffe et al. 2016). Dysregulation of
precise and coordinated gene expression changes through
epigenetic regulation may have a vital role in the patho-
genesis of schizophrenia (Jaffe et al. 2016). Previous study
has shown that DNA methylation changes are enriched for
schizophrenia GWAS risk loci (Jaffe et al. 2016), suggesting
that DNA methylation changes might be one of the possible
mechanisms underlying the GWAS risk loci. We included
two large-scale meQTL studies from Jaffe et al. (2016)
and Hannon et al. (2016b) in SZDB2.0. Briefly, Jaffe et al.
(2016) conducted a meQTL analysis in the adult control
samples (age > 13, N=258) and identified 4,107,214 signifi-
cant SNP-CpG methylation associations at FDR < 1%; Han-
non et al. (2016b) conducted an meQTL analysis in a large
collection (N=166) of human fetal brain samples spanning
56-166 days post-conception and identified > 16,000 fetal
brain meQTLs. Detailed information about sample collec-
tion and data processing of these two studies can be found
in the original publications (Hannon et al. 2016b; Jaffe et al.
2016).

Integrative omic analysis data

Previously, we have integrated schizophrenia GWAS
(Pardifias et al. 2018) with brain eQTL data (GTEx
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Consortium 2013; Wang et al. 2018) and meQTL data (Qi
et al. 2018) using the Summary data-based Mendelian ran-
domization (SMR) approach (Wu et al. 2019; Zhu et al.
2016). The SMR method uses Mendelian randomization
analysis to identify the potential functionally relevant genes
at the GWAS loci for complex traits (Zhu et al. 2016). To
verify these results, we used another integrative method
named Sherlock (He et al. 2013) to replicate the SMR analy-
sis using the same datasets. The detailed information about
the data processing can be found in the original publication
(Wu et al. 2019), and all the related results of the integra-
tive analysis were deposited in SZDB2.0. In addition, we
included the results from a recent study by Huckins et al.
(2019) in SZDB2.0. Briefly, Huckins et al. (2019) used the
transcriptomic imputation approach to combine eQTL refer-
ence panels with a large-scale genotype data to test poten-
tial associations between schizophrenia and gene expression
(Huckins et al. 2019), and they identified 413 genic associa-
tions across 13 brain regions.

Protein—protein interaction (PPIl) data

Accumulating evidence suggested that proteins involved in
the same disease are more likely to interact with each other
(Jia and Zhao 2014). Our previous studies have shown
that schizophrenia risk genes encode a densely intercon-
nected PPI network (Liu et al. 2018; Yang et al. 2018). To
explore if proteins encoded by schizophrenia candidate
genes are physically interacted with proteins encoded by
other risk genes, we downloaded the latest released InWeb
PPI data from the study by Li et al. (2017a), who compiled
a comprehensive PPI dataset based on the high-confidence
PPIs from eight well-characterized PPI databases, includ-
ing BIND (Bader et al. 2003), BioGRID (Chatr-Ary-
amontri et al. 2017), DIP (Xenarios et al. 2002), IntAct
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(Orchard et al. 2014), MatrixDB (Launay et al. 2015),
NetPath (Kandasamy et al. 2010), Reactome (Croft et al.
2014), and WikiPathways (Kutmon et al. 2016). A total of
428,429 interactions were finally retained (Li et al. 2017a).

Gene ontology (GO) and brain expression data

Many schizophrenia risk genes are associated with brain
development or neuronal function, suggesting that schizo-
phrenia is a neurodevelopmental disorder (Birnbaum and
Weinberger 2017). We used GO to annotate the function of
all schizophrenia risk genes, with a focus on brain devel-
opment. The GO is a major bioinformatics initiative to
unify the representation of gene and gene product attrib-
utes across all species (Ashburner et al. 2000; The Gene
Ontology Consortium 2019). The GO annotation file was
downloaded from geneontology.org. We also downloaded
gene expression profiles from the HPA (https://v13.prote
inatlas.org) (Fagerberg et al. 2014) to evaluate whether a
gene is expressed in the human brain.

Results
Database overview

We compiled different resources from multiple layers of
schizophrenia studies and systematically (re-)analyzed the
related data (Table 1). All datasets in SZDB2.0 were docu-
mented and managed in MySQL database (v5.5.40), which
was running on Ubuntu (14.10) system. The data were
retrieved by PhpMyAdmin. We constructed the SZDB2.0
(www.szdb.org) based on Bootstrap (v3.3.7), which is a
free and open-source CSS framework directed at respon-
sive, mobile-first front-end web development. We kept the
old version of SZDB in service for cross comparison with
the updated version, and users can browse it by clicking
on the gateway at the SZDB2.0 homepage or go directly
at www.szdb.org/SZDB/.

The SZDB2.0 provides a user-friendly web interface for
users to search, browse, and download-related data. The
users only need to input the query items (examples for the
format and content of the input items can be found at each
query page of SZDB2.0). Most returned results are output
in the form of a table. We used the DataTables plug-in
(https://datatables.net/), which enabled users to search,
reorder, and show/hide columns of the table. We fully
explained each returned result per user’s query, including
the meaning of each column in the returned table and the
original data source.

Key modules in SZDB2.0

Currently, SZDB2.0 contains four modules: (1) SNP mod-
ule; (2) Gene module; (3) CNV module; (4) Other module
(Fig. 1a). The SNP module has three tabs: ‘PGC2 GWAS’,
‘CLOZUK + PGC2 GWAS’, and ‘Functional SNPs’. The
first two tabs provide a powerful search engine for GWAS
SNPs’ query (Pardifas et al. 2018; Schizophrenia Work-
ing Group of the Psychiatric Genomics Consortium 2014).
The returned results contain basic statistical information
(including P value, SNP location, SNP type, and so on)
and annotation information. Compared to the SZDB1.0,
we added functional annotation information from LIN-
SIGHT (Huang et al. 2017), which was the newest and best
variant annotation approach for non-coding SNPs for these
GWAS risk SNPs (Pardifias et al. 2018; Schizophrenia
Working Group of the Psychiatric Genomics Consortium
2014) with a P value < 1 x 107, In the ‘Functional SNPs’
tab, we presented 132 GWAS risk SNPs that disrupt tran-
scription factor binding based on our integrating analysis
from functional genomics (including 30 ChIP-Seq experi-
ments) and position weight matrix (Huo et al. 2019).

The Gene module contains eight tabs (Fig. 1b), which
showed eight different layers of data: (1) Genes differ-
entially expressed between schizophrenia subjects and
healthy controls based on the RNA-Seq data from the dor-
solateral prefrontal cortex (DLPFC) of people with schizo-
phrenia (N =258) and control subjects (N=279) (Fromer
et al. 2016); (2) Genes identified by integrative analysis
study which integrates two GWASSs results (Pardifias et al.
2018; Schizophrenia Working Group of the Psychiatric
Genomics Consortium 2014) and eQTL (GTEx Consor-
tium 2013; Lloyd-Jones et al. 2017; Myers et al. 2007; Ng
et al. 2017; Qi et al. 2018; Wang et al. 2018; Westra et al.
2013) or meQTL (Hannon et al. 2016a, b; McRae et al.
2018) datasets using SMR (Zhu et al. 2016) and Sherlock
(He et al. 2013); (3) Genes identified by GWASs from two
large-scale GWASs of schizophrenia (Pardifias et al. 2018;
Schizophrenia Working Group of the Psychiatric Genom-
ics Consortium 2014); (4) Genes affected by CNVs, which
contain the results from the largest scale CNV research
(Marshall et al. 2017) and other related studies to date;
(5) Genes identified by linkage and association studies; (6)
Genes identified by exome sequencing based on 14 studies
(all these studies can be found at https://www.szdb.org/
exome-publication.php); (7) Genes differentially methyl-
ated between schizophrenia subjects and healthy controls,
which contains methylation expression results from six
studies (https://www.szdb.org/methylation1.php, Table 1);
(8) Genes identified by expression imputation, which
contains the results from the gene expression imputation
across multiple brain regions of schizophrenia (Huckins
et al. 2019). Except for the linkage and association data, all
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Fig. 1 Overview of the updated A
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the other data were newly updated or expanded compared
to SZDB1.0 (Table 2).

In the Gene module, we introduced a gene browser sys-
tem for the convenience of users to browse the SZDB2.0
database. In brief, we summarized each gene based on the
above eight lines of evidence, GO annotation (Www.geneo
ntology.org) (Ashburner et al. 2000; The Gene Ontology
Consortium 2019) and its expression in brain (Fagerberg
etal. 2014). We merged “integrative analysis” and “expres-
sion imputation” as the integrative evidence, because both
use the GWAS and gene expression studies to predict the
schizophrenia risk genes and are not irrelevant. We con-
sidered the GO annotation for each gene only when it was
featured by at least one of the eight lines of evidence. If the
GO annotation of a gene is related to brain development or
neuronal function, we assigned the GO annotation as “Yes”,
otherwise “No”. We used the brain expression data from
the Human Protein Atlas (HPA, https://v13.proteinatlas.org)
(Fagerberg et al. 2014) to define gene expression in the
human brain. By default, if the FPKM of a gene is more than
5, this gene was considered to be expressed in brain tissue.
Compared to SZDB1.0, we did not prioritize the promising
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schizophrenia candidate genes using a simple and arbitrary
scoring algorithm. We provided the summary results of this
database for users to perform a fast browsing of the related
information and to rank the schizophrenia-associated genes
in a descending order based on the total number of “Yes”
outcomes for a gene in the last column “Total”.

In the CNV module, we collated the results of 77 publi-
cations about CNVs (https://www.szdb.org/cnv-publicatio
n.php) identified in schizophrenia patients. A total of 983
CNVs were included and annotated. We listed the detailed
information of each CNYV, including CNV location, genes
affected by CNV, and CNV detection platform. To identify
interesting CN'Vs, users can reorder or search the result table
by clicking on the header of different columns or inputting
keywords in the search box. The first column will direct
users to the detailed information table for each CNV.

In the Other module, we showed the compilation of
eQTL, tQTL, meQTL, LocusZoom, PPI, and polygenic
risk score data. This module provides an easy and friendly
interface for users to analyze their own data. Users can
also query eQTL, tQTL, and meQTL data included in
SZDB2.0. The LocusZoom allowed users to analyze and
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Table 2 Data information for SZDB2.0 and other databases

SZDB1.0 (www.szdb.org/SZDB/) SZDB2.0 (www.szdb.org) SZGR2.0 (https://bioin  SZGene
fo.uth.edu/SZGR) (www.szgen
e.0rg)
GWAS study PGC2 PGC2, CLOZUK +PGC PGC2 No
Linkage study 2 Studies 2 Studies 1 Study 1 Study
SNP annotation RegulomeDB, SIFT, PolyPhen-2 ~ PolyPhen-2, LINSIGHT No No
Functional SNPs No Yes No No

Differential expression

Microarray (195 samples)

RNA-seq (537 samples, DLPFC)

Microarray (859 sam-  No
ples, lymphoblastoid
cell lines)

Integrative analysis 1 GWAS, 1 eQTL dataset 2 GWASs, 20 eQTL datasets, 5 meQTL No No
datasets
WES 2 Studies 14 Studies 11 Studies No
Differential methylation 2 Studies 6 Studies 5 Studies No
Expression imputation ~ No Yes No No
Brain expression BrainSpan, BrainCloud Human Protein Atlas BrainSpan, BrainCloud No
GO annotation No Yes No No
CNV No 77 studies 3 Studies No
Expression QTL 1 Study (microarray, 193 samples) 2 Studies (RNA-seq, 467 samples from No No
CMC and 1387 samples from PsychEN-
CODE)
transcript QTL No 2 Studies (RNA-seq, 467 samples from No No
CMC and 1387 samples from PsychEN-
CODE)
Methylation QTL 1 Study 2 Studies 2 Studies No
PRS No Yes No No
PPI InWeb Latest released InWeb data No No
LocusZoom Yes Yes No No
Drugs No No Yes No

GWAS genome-wide association study, SNP single-nucleotide polymorphism, WES whole-exome sequencing, GO gene ontology, CNV copy-
number variation, QTL quantitative trait locus, PRS polygenic risk score, PPI protein—protein interaction

plot the genetically associated regions of interest (Pruim
et al. 2010). The PPI tab offers a one-click test for dis-
cerning potential protein—protein interactions among the
queried proteins. We used the ECharts.js (Li et al. 2018a)
(https://echarts.baidu.com) to endow color for each que-
ried gene in the PPI network, which was based on the
above calculated gene score. Polygenic risk scores (PRS),
which summarize the effects of genome-wide genetic
markers to measure the genetic liability to a trait or a
disorder, are very promising for predicting human com-
plex traits and diseases(Ge et al. 2019). We embedded
two PRS software programs in SZDB2.0: PRSice-2 (Choi
and O’Reilly 2019) and PRS-CS (Ge et al. 2019). The
PRSice-2 software (Choi and O’Reilly 2019) is an effi-
cient and scalable software for automating and simplify-
ing PRS analysis. Users only need to upload the genotype
file, and the PRSice-2 tool will automatically calculate the
PRS and output the strata plot. PRS-CS is a newly devel-
oped method which utilizes a high-dimensional Bayes-
ian regression framework to calculate the PRS (Ge et al.

2019). User can use PRSice-2 or PRS-CS to conduct PRS
analysis for their own choices.

Discussion

In recent years, there has been a rapid increase in genetic
data for schizophrenia studies (Fromer et al. 2016; Hannon
et al. 2016Db; Jaffe et al. 2016; Li et al. 2018b; Pardifias et al.
2018; Wang et al. 2018). There is an urgent need to com-
pile all available knowledge about genetic susceptibility to
schizophrenia and provide a one-stop server for accessing
these bulk data and retrieving a list of genetic risk genes for
schizophrenia. Previously, we established SZDB1.0 to meet
this gap (Wu et al. 2017). Since the launch of this database,
there are many more large-scale studies with bulk data and
had yielded a long list of risk genes for schizophrenia (Huck-
ins et al. 2019; Huo et al. 2019; Li et al. 2018b; Pardifnas
et al. 2018; Wang et al. 2018). Using integrative analyses of
these reported data, we and others had added new risk genes
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to the list (Huckins et al. 2019; Huo et al. 2019; Wu et al.
2019; Yang et al. 2018). Therefore, there is a pressing need
to update the SZDB database, to show all latest findings and
to meet the accumulating needs of the field.

The SZDB2.0 was developed for the convenience of
researchers to quickly retrieve and browse schizophrenia-
related comprehensive information. Users can get the GWAS
results and functional annotation data from the SNP module.
In the Gene module, we collated genes which are related to
schizophrenia from the aspect of expression, methylation,
exome sequencing, linkage and association, CNV, and inte-
grative analyses’ results. Users can get all the above infor-
mation from the Gene browser system. The CNV module
contains the results of schizophrenia CNV studies in the
latest 15 years, and most of these studies were performed
by high-throughput sequencing. We provide several useful
tools (like LocusZoom, PPI and PRS calculator) and several
useful query platforms (like gene eQTL, transcript eQTL,
and methylation QTL) for users to analyze their own data in
the Other module. In addition, through the searching entry in
the homepage, users can get comprehensive information of a
gene from the above four modules which provide a one-stop
service for a gene associated with schizophrenia.

Compared to the first version of SZDB, the updated
SZDB2.0 has the following features. First, only limited data
resources were included in first version of SZDB, whereas
SZDB2.0 has incorporated all main datasets in the field
(Table 2). Second, the interface of SZDB (including color
configuration and Cascading Style Sheets (CSS) layout)
were rebuilt for a better visualization. The SZDB2.0 was
established on the Bootstrap front-end framework and we
took advantage of the CSS classes defined in Bootstrap to
customize the appearance of contents. Using the Bootstrap
grid system, SZDB2.0 is also mobile end friendly. Moreo-
ver, we optimized the database structure and MySQL script,
so the query speed in SZDB2.0 is much faster than in the
first version of SZDB1.0. Third, we included the Locus-
Zoom, PPI, and PRS tools in SZDB2.0, which offer users an
interface to analyze their own data. Finally, we introduced a
gene browser system, which provided a convenient way for
users to browse all the schizophrenia-related information
of a gene.

The SZDB2.0 has some advantages over other schizo-
phrenia databases such as SZGene (Allen et al. 2008), SZGR
(Jia et al. 2017), and schizophrenia genetics knowledgebase
(Liu et al. 2019), which were either established many years
ago with no updates, or the inclusion of the large-scale data-
set was incomplete (Table 2). Note that the schizophrenia
genetics knowledgebase (Liu et al. 2019) is the updated
version of SZGene (Allen et al. 2008): both databases only
contain the linkage and association meta-analyses’ results
of schizophrenia genetic studies. In SZDB2.0, linkage and
association data of schizophrenia from four large-scale

@ Springer

studies were also included as a sub-catalog of the gene
module (including SZGene which only covers one of four
studies) (Allen et al. 2008; Lewis et al. 2003; Liu et al. 2019;
Ng et al. 2009). Although the updated SZGR is a relatively
comprehensive schizophrenia database which contained data
from genetic, transcriptomic, epigenetic, and translational
medicine (Jia et al. 2017), most of the data in SZGR were
presented as a browser format, and users could not conveni-
ently access the data.

In summary, we released the SZDB2.0, which provides a
comprehensive resource for schizophrenia research society.
We collated and updated the most recently published schiz-
ophrenia-related data and systematically reanalyzed these
data to provide a one-stop service for access to schizophre-
nia risk genes. We believe that the updated SZDB2.0 will
become a useful and convenient platform for schizophrenia
research.
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