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a b s t r a c t 

Alzheimer’s disease (AD) is the most common neurodegenerative disease with high heritability. Growth 

factors (GFs) might contribute to the development of AD due to their broad effects on neuronal system. 

We herein aimed to investigate the role of rare and common variants of GFs in genetic susceptibility of 

AD. We screened 23 GFs in 6324 individuals using targeted sequencing. A rare-variant-based burden test 

and common-variant-based single-site association analyses were performed to identify AD-associated GF 

genes and variants. The burden test showed an enrichment of rare missense variants ( p = 6.08 × 10 −4 ) 

in GF gene-set in AD patients. Among the GFs, EGF showed the strongest signal of enrichment, especially 

for loss-of-function variants ( p = 0.0 019). A common variant rs469880 0 of EGF showed significant asso- 

ciations with AD risk ( p = 3.24 × 10 −5 , OR = 1.26). The risk allele of rs4698800 was associated with 

an increased EGF expression, whereas EGF was indeed upregulated in AD brain. These findings suggested 

EGF as a novel risk gene for AD. 

© 2022 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Alzheimer’s disease (AD; OMIM, 104300) is an age-related neu-

rodegenerative disorder and the most common type of dementia

( Querfurth and LaFerla, 2010 ; Scheltens et al., 2021 ). AD is charac-

terized by a series of pathological features including deposition of

extracellular β-amyloid (A β) plaques, intracellular neurofibrillary

tangles formed by hyperphosphorylated tau, neuronal loss, pro-

found microgliosis, and astrocytosis ( Querfurth and LaFerla, 2010 ;

De Strooper and Karran, 2016 ; Scheltens et al., 2021 ). Growth fac-

tors (GFs) are multifunctional proteins that affect the rate of cell

proliferation, differentiation and migration, and also tissue remod-

eling and inflammation ( Bottner et al., 20 0 0 ; Rodrigues et al., 2010 ;

Li et al., 2012 ; Seeger and Paller, 2015 ). There are several dif-
∗ Corresponding authors at: Key Laboratory of Animal Models and Human Disease 

Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, No.21, 
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ferent kinds of GFs, including the transforming growth factor β
(TGF- β) superfamily, fibroblast growth factors (FGFs), insulin de-

rived growth factors (IGFs), epidermal growth factor (EGF) su-

perfamily, vascular endothelial growth factor (VEGF) family, nerve

growth factor (NGF) family, platelet-derived growth factor (PDGF)

family, and so on. The GFs play important roles in neurogenesis,

neurodegeneration ( Woodbury and Ikezu, 2014 ), synapse forma-

tion ( Schmeisser et al., 2012 ), axonal transport ( Schindowski et al.,

2008 ), and homeostasis of the central nervous system (CNS)

( Bottner et al., 20 0 0 ; Lauzon et al., 2015 ). The changes of GF

levels in blood plasma ( Mocali et al., 2004 ; Ray et al., 2007 ;

Johansson et al., 2013 ) and brain of AD patients ( Rivera et al.,

2005 ; Mahoney et al., 2021 ) have been reported frequently, and

they may be associated with the cognitive or clinical outcomes of

AD ( Ray et al., 2007 ; Hohman et al., 2015 ; Lim et al., 2016 ). The

signaling pathways of GFs have also been demonstrated to be in-

volved in the pathogenesis of AD ( Patel et al., 2010 ; Turner et al.,

2016 ). These signaling abnormalities in turn may impair synap-

tic plasticity and cognition in AD progression ( Caraci et al., 2015 ;

Ferreira, 2021 ). Due to their functional importance and the ad-

vances in recent studies, the targeting of GFs may offer consider-

https://doi.org/10.1016/j.neurobiolaging.2022.10.009
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http://www.elsevier.com/locate/neuaging.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neurobiolaging.2022.10.009&domain=pdf
mailto:yaoyg@mail.kiz.ac.cn
mailto:zhangdengfeng@mail.kiz.ac.cn
https://doi.org/10.1016/j.neurobiolaging.2022.10.009


X. Li, M. Xu, R. Bi et al. / Neurobiology of Aging 123 (2023) 170–181 171 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

able therapeutic potential in the treatment of AD ( Freiherr et al.,

2013 ; Lauzon et al., 2015 ). 

AD is a highly heritable disease with population heterogene-

ity ( Lambert and Amouyel, 2007 ; McClellan and King, 2010 ). The

heritability of AD ranges from 58% to 79% ( Gatz et al., 2006 ).

Apart from biomarker evaluation and functional characterizations,

genetic studies have also indicated the contributions and involve-

ment of GFs in AD. Several genetic association studies focusing

on limited numbers of variants and candidate genes have iden-

tified association of some GFs with AD ( Luedecking et al., 20 0 0 ;

Chapuis et al., 2006 ; Wang et al., 2012 ; Yang et al., 2016 ). However,

the conclusions in these studies have been somewhat controver-

sial, partially because of their relatively small sample size and pop-

ulation substructure ( Chang et al., 2013 ; Liu et al., 2013 ). In recent

genomic studies with large sample size of European populations or

populations of European ancestry, one of the growth factors, EGFR ,

was highlighted as a potentially causal gene by gene prioritization

and knockoff-based methods ( He et al., 2021 ; Bellenguez et al.,

2022 ). Genomic studies of AD in Chinese ( Wang et al., 2018a ;

Zhou et al., 2018 ; Zhang et al., 2019 ; Jia et al., 2021 ) and Japanese

and Korean populations ( Miyashita et al., 2013 ; Shigemizu et al.,

2021 ) have emerged in recent years, and reported several risk

genes, although again the studies have been limited by relatively

small sample sizes. Considering the fact that GFs have been found

to be actively involved in AD, it is appropriate to perform a com-

prehensive analysis of GF variants in Han Chinese with AD. 

In this study, we performed a 3-stage study combining targeted

next-generation sequencing (NGS) and meta-analysis in 1280 AD

patients and 5044 normal control subjects from the Han Chinese

population. We successfully sequenced the exon and nearby un-

translated regions (UTRs) of 23 GFs and examined the association

of common (minor allele frequency (MAF) ≥ 0.01 in control sam-

ples) and rare variants (MAF < 0.01) with AD. We identified a

novel AD risk gene EGF , with both its common and rare variants

being associated with AD in Han Chinese. 

2. Materials and methods 

2.1. Subjects 

AD patients without known pathogenic variants in APP, PSEN1

or PSEN2 after sequencing verification were recruited from multi-

ple provinces or municipalities in Southern and Eastern China, and

were used as the stage 1 and stage 2 cohorts, respectively. All in-

dividuals with AD were diagnosed by at least 2 clinical psychia-

trists following Diagnostic and Statistical Manual of Mental Disor-

ders (DSM-IV) and some patients have been described in our pre-

vious studies ( Zhang et al., 2016 ; Li et al., 2017 ; Bi et al., 2018 ;

Wang et al., 2016). In brief, the Southern cohort was recruited from

hospitals in Sichuan, Hunan and Yunnan provinces, including 635

unrelated individuals with AD (mean age 79.7 ± 8.2 years, 40.0%

male) and 1507 healthy controls (mean age 35.2 ± 15.5 years,

56.2% male). Part of the control samples from Yunnan Province has

been reported in the screening stage conducting targeted NGS in

our previous study ( Wang et al., 2018b ). The Eastern cohort in-

cluding 645 cases (mean age 79.2 ± 9.1 years, 41.2% male) re-

cruited from Shanghai and Zhejiang Province and 3537 controls

from the China Metabolic Analytics Project (ChinaMAP) ( Cao et al.,

2020 ). Details about genomic DNA collection, library construction,

and deep whole genome sequencing (WGS) of samples from Chi-

naMAP were described in the original study ( Cao et al., 2020 ). In

total, 1280 AD cases and 1507 unrelated healthy controls receiv-

ing targeted NGS and 3537 controls from the ChinaMAP ( Cao et al.,

2020 ) were analyzed in current study. Written informed consents

were obtained from all participants or their guardians (for those
who were unable to take care of themselves) prior to this study.

This study was approved by the Institutional Review Board of Kun-

ming Institute of Zoology, Chinese Academy of Sciences. 

2.2. Gene selection and targeted NGS 

Twenty-three GFs were selected from NCBI ( https://www.ncbi.

nlm.nih.gov/ ) with verified classification from Immport ( https://

www.immport.org/shared/genelists ) ( Bhattacharya et al., 2018 ). Ge-

nomic DNA extraction, library construction, targeted region cap-

ture was conducted as described previously ( Wang et al., 2018b ).

In brief, DNA was extracted from whole blood with the AxyPrep

Blood Genomic DNA Miniprep Kit (Axygen Scientific). Coding re-

gion and nearby UTRs of selected genes were captured with the

NimbleGen SeqCap EZ Choice Enrichment Kit (Roche NimbleGen)

according to the manufacturer’s instructions. DNA probes were de-

signed using the online NimbleDesign tool. Illumina Hiseq X Ten

and Novaseq 60 0 0 Genome Analyzers were used to sequence the

DNA libraries. 

2.3. NGS data processing and quality control 

Raw reads were trimmed and filtered with Trimmomatic

( Bolger et al., 2014 ) and mapped to the human reference genome

(GRCh37/hg19) by using the Burrows-Wheeler Aligner ( Li and

Durbin, 2009 ). Base quality score recalibration and variant calling

were performed by using the Genome Analysis Toolkit (GATK v4.1)

following the best practices pipeline ( https://www.broadinstitute.

org/gatk/guide/best-practices ) ( McKenna et al., 2010 ). Variants

with quality by depth (QD) < 2, Fisher’s strand bias (FS) > 60,

strand odds ratio (SOR) > 3, read position rank sum (ReadPos-

RankSum) < -3, mapping quality (MQ) < 40, or mapping quality

rank sum (MQRankSum) < -10 were filtered ( McKenna et al., 2010 ;

Raghavan et al., 2018 ). Genotypes with genotyping quality (GQ)

less than 30, or heterozygous sites violated from allele balance (AB,

AB < 0.2 or AB > 0.8) ( Muyas et al., 2019 ) were set as missing.

All variants including single nucleotide variants (SNVs) and inser-

tions/deletions were annotated with ANNOVAR ( Wang et al., 2010 ).

The inclusion threshold for common and rare variants was ≥ 20 ×
sequencing depth. Variants with genotyping rate less than 90%, or

deviated from Hardy-Weinberg equilibrium (HWE p < 1 × 10 −6 )

were excluded. Samples with average genotyping rate < 80% were

also excluded ( Chang et al., 2015 ). 

2.4. Cross validation in European populations 

We used the reported data of European populations for cross

validation. Briefly, the summary data from a newly published large

GWAS meta-analysis ( Bellenguez et al., 2022 ) which contains a to-

tal of 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663

controls was used for cross-validating the associations of GF vari-

ants with AD identified in Han Chinese in this study. Summary

statistics in this GWAS study are available under accession num-

ber GCST90027158 ( https://www.ebi.ac.uk/gwas/ ). 

2. 5 eQTL analysis 

For the identified non-coding common variants associated with

AD, we evaluated whether they may affect the expression of their

corresponding gene(s). cis-eQTL datasets were extracted from pe-

ripheral blood eQTL data from the Consortium for the Architec-

ture of Gene Expression (CAGE) ( Lloyd-Jones et al., 2017 ) and brain

eQTL data from a meta-analysis ( Qi et al., 2018 ) of GTEx brain

( GTEx Consortium et al., 2017 ), CommonMind Consortium (CMC)

( Fromer et al., 2016 ) and ROSMAP ( Ng et al., 2017 ). 

https://www.ncbi.nlm.nih.gov/
https://www.immport.org/shared/genelists
https://www.broadinstitute.org/gatk/guide/best-practices
https://www.ebi.ac.uk/gwas/
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2. 6 mRNA expression profiling 

The genes, whose expression may be regulated by common

variants as indicated by the eQTL data, were validated as to

whether they were differentially expressed in brain regions or/and

single cell type(s) between AD patients and controls. Bulk-tissue

mRNA expression in 4 brain regions (entorhinal cortex, hippocam-

pus, temporal cortex, and frontal cortex) were extracted from our

previous study at the AlzData ( http://www.alzdata.org/ ), which

was based on a systematic integrated analysis of expression pro-

files of AD-affected brain tissues from 684 AD patients and 562

controls ( Xu et al., 2018 ). Single-nucleus transcriptomes from pre-

frontal cortex of 48 individuals with varying degrees of AD pathol-

ogy (no-pathology, early-pathology and late-pathology) were used

to investigate the altered GF(s) during AD pathology. mRNA expres-

sion in 6 major brain cell types including excitatory (Ex) and in-

hibitory (In) neurons, astrocytes (Ast), oligodendrocytes (Oli), oligo-

dendrocyte precursor cells (Opc), and microglia (Mic) were ana-

lyzed in the original study ( Mathys et al., 2019 ). 

2.7. Statistical analysis 

The gene-set-based burden test was conducted using the op-

timized sequence Kernel association test (SKAT-O) ( Lee et al.,

2012 ). Rare variants within all 23 genes were put together to

evaluate the association of GFs with AD risk. The association

was determined based on the following categories of rare vari-

ants: loss-of-function (LoF), possibly pathogenic, and rare mis-

sense variants. Variants belonging to stop gain/loss, frameshift

indels, initiation codon, and splice sites were defined as LoF.

Possibly pathogenic rare missense variants were defined by us-

ing the Mendelian Clinically Applicable Pathogenicity (M-CAP)

( Jagadeesh et al., 2016 ), which is a highly sensitive pathogenic

classifier combining CADD ( Amendola et al., 2015 ), SIFT ( Ng and

Henikoff, 2003 ), and PolyPhen-2 ( Adzhubei et al., 2010 ) with novel

features and a powerful model. Missense variants were defined

as rare if they had a MAF < 0.01 in the control population. The

effects of rare variants within each gene on AD were assessed

both in single cohorts and the combined cohort in targeted se-

quencing. The gene-based burden test was also conducted by us-

ing SKAT-O ( Lee et al., 2012 ). Rare variants defined as LoF, pos-

sibly pathogenic and missense within each gene were put to-

gether to evaluate the association of each gene with AD risk. Pop-

ulation frequency of each rare missense and LoF variant in East

Asian population from the Genome Aggregation Database (gno-

mAD, https://gnomad.broadinstitute.org/ ) ( Karczewski et al., 2020 )

were retrieved for the AD-associated gene(s) identified in Han Chi-

nese. As we did not have the detailed genotype data of each in-

dividual from the ChinaMAP ( Cao et al., 2020 ), we performed the

burden tests only using 1507 healthy samples from the Southern

cohort as the control for comparison. We used a stringent Bon-

ferroni correction to help to identify the most associated GF gene

with AD. 

Association between common variants and AD was mea-

sured by Fisher’s exact test. A fixed effects meta-analysis com-

bined the 2 cohorts was performed using the metafor R pack-

age ( Viechtbauer, 2010 ). Cochran’s Q-test was applied to test for

residual heterogeneity. Quanto software ( Gauderman, 2002 ) was

used to evaluate the statistical power of our samples under the

gene only hypothesis and log additive model. A p value < 0.05

was defined as the threshold of nominal significance. The Bon-

ferroni correction for statistical significance was calculated on the

basis of the corresponding numbers of tested variants or genes.

Linkage disequilibrium (LD) plots of the identified variants in
Asian and European populations were constructed by LocusZoom

(http://locuszoom.sph.umich.edu/) ( Pruim et al., 2010 ). 

Genes were defined as differentially expressed genes (DEGs) in

bulk-tissue with FDR < 0.05 ( Xu et al., 2018 ). DEGs in single nu-

cleus transcriptome met the criteria of FDR-adjusted p < 0.01 and

absolute log2 fold change > 0.25, as described in the original re-

search ( Mathys et al., 2019 ). 

3. Results 

3.1. Variants identified by targeted NGS 

The mean sequencing depth of all 23 genes was higher than

100 × (Supplementary Table S1). The sequencing depth for all of

the variants ranged from 26 × to 187 × (mean = 46). After qual-

ity control, 2431 rare variants and 171 common variants of the

23 GF genes in 6324 individuals with or without AD were in-

cluded in subsequent analyses. Rare missense variants were sub-

jected to a burden test and common variants were subjected to

a single-site association analysis ( Fig. 1 ). The Bonferroni corrected

significance was defined as p < 2.92 × 10 −4 (0.05/171) for a sin-

gle common variant and p < 2.17 × 10 −3 (0.05/23) for gene-based

analysis. 

We used Cochran’s Q-test to evaluate potential population het-

erogeneity between Southern and Eastern cohorts, and found a rel-

atively low level of heterogeneity (I 2 < 30%, p > 0.05) for most of

the common and rare variants (Supplementary Table S3 and S5).

The odds ratios of these variants indicated a consistent direction

of genetic effect between Southern and Eastern cohorts ( Table 3 ) . 

3.2. Significant enrichment of rare variants in the GF gene set in AD 

patients 

The advantage of targeted deep sequencing is the identifica-

tion of rare coding variants. We performed the SKAT-O burden test

( Lee et al., 2012 ) by combining all rare variants of the global GF

pathways. In samples from Southern China, LoF variants reached

a statistical significance ( p = 0.023). All 3 kinds of rare variants

(LoF, possibly pathogenic and missense) in GFs were significantly

enriched in AD patients in the combined cohort containing 1280

AD patients and 1507 controls. Rare missense variants showed

the most significant enrichment ( p = 6.08 × 10 −4 ), while LoF

( p = 0.005) and possibly pathogenic variants ( p = 0.004) also con-

tributed to the association between GFs and AD risk ( Table 1 ). This

result suggested a potentially important effect of GF rare coding

variants on AD. Note that such a comparison might be biased as

the control sample (1507 individuals) was from the Southern co-

hort. 

3.3. Significant enrichment of rare variants in the EGF gene in AD 

patients 

In order to identify the exact gene accounting for the gene-set

level association, we conducted a SKAT-O burden test analysis us-

ing rare variants in each cohort ( Fig. 1 and Table 2 ). Five genes

including EGF, GDNF, HGF, PDGFRB and VEGFC passed the nomi-

nal significance of p < 0.05 in the combined targeting samples.

The association of rare missense variants of EGF, HGF, PDGFRB and

VEGFC became much stronger after a combination of the targeting

samples, indicating the requirement of a larger sample size for ge-

netic association analysis of AD in Han Chinese. Some of the GFs

showed association with AD only in 1 cohort, and the association

faded away ( EGFR, IGF1R and LTBP1 ) or became weaker ( GDNF ) in

the combined cohort. The inconsistent association pattern between

http://www.alzdata.org/
https://gnomad.broadinstitute.org/
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Fig. 1. The strategy for identifying AD risk genes and variants in growth factors. Common and rare variants were subjected to association analysis and burden test, respec- 

tively. A total of 3537 Eastern Han Chinese individuals with WGS data were recruited from ChinaMAP ( Cao et al., 2020 ) and were used in the association test. 

Table 1 

Gene-set-based burden test showing an enrichment of rare variants in growth factors in Han Chinese with AD. 

Type of rare variants Stage 1 (Southern cohort) 

(635 cases / 1507 controls) 

Stage 2 (Eastern cohort) 

(645 cases / 1507 controls) 

Combined 

(1280 cases / 1507 controls) 

LoF 0.023 (10) 0.011 (8) 0.005 (10) 

Possibly pathogenic 0.158 (374) 0.007 (362) 0.004 (450) 

Missense 0.203 (598) 1.46 × 10 −4 (570) 6.08 × 10 −4 (713) 

Shown values refer to p values estimated by the gene-set-based burden test, and the numbers of variants in all 23 genes used for the test are in parentheses. 

Key: LoF, loss-of-function variants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

different cohorts might be partially caused by limited sample size

and/or clinical heterogeneity. 

The EGF gene was associated with AD in both cohorts in the

gene-based burden test, and the association became much stronger

in the combined samples. The association between EGF and AD

was driven by 3 LoF variants ( p = 0.0019), 25 possibly pathogenic

variants ( p = 0.010) and 38 rare missense variants ( p = 0.013).

Only the LoF variants in EGF passed the threshold of statisti-

cal significance after the Bonferroni correction for the number

of tested genes. The 3 LoF variants (4_110882093_C_A, p.Y379 ∗;

rs369702571, p.R394 ∗; and rs556105355, p.R1163 ∗) were predicted

to be stop codon mutation in EGF . Among them, p.R1163 ∗ (T allele

of rs556105355) was significantly enriched in AD patients ( Fig. 2 )

with MAF of 0.003 ( p = 1.55 × 10 −3 , OR = 8.66 in single-site asso-

ciation analysis) (Supplementary Table S2 and S3). The frequency

of p.R1163 ∗ was 0.0 0 04 in the ChinaMAP controls (Supplementary

Table S2) and 0.002 in the population controls of East Asian from

gnomAD (Supplementary Table S4), adding more support for the

enrichment of this LoF variant in AD patients. This variant had a

mean sequencing depth of 48 × (Supplementary Table S2), provid-
ing a high confidence for base-calling, and the variant was further

verified by Sanger sequencing (Supplementary Fig. S1). Taken to-

gether, EGF was shown to be a novel risk gene for AD as it had an

enrichment of potentially harmful rare variants. 

3.4. Association of a common variant rs4698800 in EGF with AD in 

Han Chinese 

Besides the rare variants, we identified a total of 171 common

variants in the 23 GFs. The MAF of these variants ranged from

0.01 to 0.5 in the combined control samples. We tested the as-

sociation of common variants in GFs with AD risk in each cohort

and the combined sample. The power to detect an odds ratio (OR)

value as 1.25 for a risk allele ranged from 18.7% (MAF = 0.01)

to 99.9% (MAF = 0.5). Considering an average population MAF of

0.1, the power was above 88.8% (Supplementary Fig. S2). We listed

the association results for all the common variants in each in-

dependent and the combined cohort in Supplementary Table S5,

and listed the variants which reached nominal significance ( p <

0.05) in the combined cohort in Table 3 . There were 9 single
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Table 2 

Gene-based burden test of rare variants in EGF and other growth factor genes in Han Chinese patients with AD. 

Gene Stage 1 (Southern cohort) 

(635 cases / 1507 controls) 

Stage 2 (Eastern cohort) 

(645 cases / 1507 controls) 

Combined 

(1280 cases / 1507 controls) 

LoF Possibly 

pathogenic 

Missense LoF Possibly 

pathogenic 

Missense LoF Possibly 

pathogenic 

Missense 

ANGPTL1 0.648 (1) 0.750 (8) 0.387 (17) 0.650 (1) 0.855 (8) 0.616 (17) 0.730 (1) 0.847 (8) 0.550 (18) 

BDNF NA 0.088 (5) 0.175 (8) NA 0.706 (3) 0.269 (7) NA 0.309 (6) 0.212 (10) 

EGF 0.008 (3) a 0.046 (20) a 0.189 (32) 0.005 (2) a 0.014 (22) a 0.016 (31) a 0.0019 (3) a 0.010 (25) a 0.013 (38) a 

EGFR 0.648 (1) 0.019 (20) a 0.075 (28) 0.650 (1) 0.070 (23) 0.399 (30) 0.730 (1) 0.051 (28) 0.250 (37) 

FGFR2 NA 0.986 (14) 0.824 (20) NA 0.944 (14) 0.897 (21) NA 0.975 (17) 0.805 (24) 

GDNF NA 0.344 (4) 0.344 (4) NA 0.003 (4) a 0.003 (4) a NA 0.018 (5) a 0.018 (5) a 

HBEGF 0.648 (1) 0.926 (2) 0.872 (8) 0.650 (1) 0.853 (3) 0.990 (8) 0.730 (1) 0.814 (3) 0.966 (9) 

HGF 0.648 (1) 0.290 (15) 0.320 (18) 0.650 (1) 0.243 (15) 0.077 (19) 0.730 (1) 0.082 (19) 0.043 (24) a 

IGF1 NA 0.670 (9) 0.604 (10) NA 0.459 (10) 0.655 (11) NA 0.411 (10) 0.439 (11) 

IGF1R 0.753 (2) 0.965 (20) 1.000 (34) 0.755 (2) 0.627 (20) 0.037 (30) a 0.357 (2) 0.855 (25) 0.250 (40) 

IGF2 NA 0.150 (3) 0.521 (4) NA 0.153 (3) 0.522 (4) NA 0.102 (4) 0.139 (5) 

IGF2R NA 0.987 (23) 0.906 (75) NA 0.528 (26) 0.423 (78) NA 0.750 (30) 0.548 (93) 

INHBC 0.148 (1) 0.363 (6) 0.622 (9) 1.000 (0) 0.848 (5) 0.773 (9) 0.230 (1) 0.806 (7) 0.944 (11) 

KDR NA 0.112 (28) 0.182 (41) NA 0.452 (26) 0.658 (37) NA 0.314 (32) 0.529 (46) 

LTBP1 1.000 (0) 0.373 (55) 0.515 (62) 1.000 (0) 0.144 (59) 0.007 (65) a 1.000 (0) 0.147 (69) 0.053 (76) 

PDGFC NA 0.666 (3) 0.661 (4) NA 0.119 (3) 0.114 (4) NA 0.383 (3) 0.444 (4) 

PDGFRA NA 0.084 (19) 0.089 (35) NA 0.468 (13) 0.592 (26) NA 0.138 (20) 0.220 (39) 

PDGFRB NA 0.489 (19) 0.301 (34) NA 0.030 (19) a 0.027 (33) a NA 0.215 (24) 0.013 (42) a 

TGFB2 NA 0.753 (2) 0.914 (5) NA 0.779 (3) 0.784 (5) NA 0.798 (3) 0.917 (6) 

TGFBR1 NA 0.525 (3) 0.523 (5) NA 0.203 (2) 0.479 (5) NA 0.215 (3) 0.254 (6) 

TGFBR2 NA 0.487 (14) 0.364 (20) NA 0.673 (9) 0.650 (11) NA 0.464 (14) 0.522 (20) 

VEGFA NA 0.660 (5) 0.874 (11) NA 0.412 (5) 0.659 (10) NA 0.396 (7) 0.648 (13) 

VEGFC NA 0.045 (1) 0.030 (13) a NA 0.648 (1) 0.063 (13) NA 0.119 (1) 0.0024 (15) a 

Shown values refer to p values estimated by the gene-based burden test, and the numbers of tested variants in each gene are in parentheses. 

Key: NA, not available. 
a p < 0.05. 
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Table 3 

Common genetic variants of growth factors in 2 Han Chinese cohorts. 

Gene SNP Chr:position Alt/Ref Stage 1 (Southern cohort) 

(635 cases / 1507 controls) 

Stage 2 (Eastern cohort) 

(645 cases / 3537 controls) 

Stage 3 (meta-analysis) 

(1280 cases / 5044 controls) 

MAF p OR (95% CI) MAF p OR (95% CI) p OR (95% CI) Het p 

EGF rs4698800 4:110866508 T/C 0.271/0.239 0.037 1.19 

(1.01-1.39) 

0.248/0.200 2.93 × 10 −4 1.32 

(1.13-1.53) 

3.24 × 10 −5 1.26 

(1.13-1.40) 

0.339 

EGF rs10470911 4:110865271 G/T 0.244/0.237 0.606 1.04 

(0.89-1.22) 

0.236/0.200 0.004 1.23 

(1.07-1.43) 

0.013 1.14 

(1.03-1.27) 

0.119 

PDGFRB rs200684708 5:149512332 A/G 0.015/0.013 0.669 1.12 

(0.61-1.99) 

0.012/0.006 0.008 2.28 

(1.18-4.18) 

0.029 1.56 

(1.05-2.34) 

0.085 

FGFR2 rs1613776 10:123244834 T/C 0.018/0.017 0.794 1.07 

(0.61-1.81) 

0.021/0.011 0.008 1.90 

(1.16-3.00) 

0.023 1.47 

(1.05-2.06) 

0.097 

PDGFRB rs246391 5:149497177 C/T 0.110/0.123 0.241 0.88 

(0.70-1.09) 

0.102/0.122 0.053 0.82 

(0.67-1.00) 

0.025 0.85 

(0.73-0.98) 

0.658 

HGF rs10272030 7:81350223 G/A 0.131/0.145 0.262 0.89 

(0.73-1.09) 

0.126/0.146 0.059 0.84 

(0.70-1.01) 

0.030 0.86 

(0.76-0.99) 

0.653 

IGF2R rs2277070 6:160445793 G/A 0.304/0.272 0.040 1.17 

(1.00-1.36) 

0.283/0.266 0.242 1.09 

(0.95-1.25) 

0.023 1.12 

(1.02-1.24) 

0.478 

HGF rs12536657 7:81350208 A/G 0.131/0.145 0.246 0.89 

(0.73-1.08) 

0.129/0.146 0.108 0.86 

(0.72-1.03) 

0.045 0.87 

(0.77-1.00) 

0.807 

HGF rs1800793 7:81346685 T/C 0.128/0.142 0.245 0.89 

(0.73-1.08) 

0.127/0.144 0.118 0.87 

(0.72-1.04) 

0.049 0.88 

(0.77-1.00) 

0.847 

Only common variants with p < 0.05 in meta-analysis are listed. Meta-analysis was conducted by combining the cohorts from stage 1 and stage 2. 

Cases and controls of the Southern cohort in stage 1 were recruited from Sichuan, Hunan and Yunnan Province of China, and were sequenced in this study. 

Cases of Eastern cohort in stage 2 were recruited from Shanghai and Zhejiang Province of China and were sequenced in this study. The Eastern Han Chinese (n = 3537) from the ChinaMAP ( Cao et al., 2020 ) were used as a 

control for comparion with cases of Eastern cohort. 

Key: Alt/Ref, alternative allele/reference allele; Chr, chromosome; CI, confidence interval; Het P, p value for heterogeneity statistic. MAF, minor allele frequencies of case/control; OR, odds ratio; SNP, single nucleotide polymor- 

phism. 
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Fig. 2. Distribution of rare damaging variants of EGF in AD and control samples from Han Chinese population in targeted sequencing. Schematic profile of EGF was predicted 

by SMART ( http://smart.embl-heidelberg.de/ ). LY, low-density lipoprotein-receptor YWTD domain; TM, transmembrane region. The AD-enriched LoF variant p.R1163 ∗ was 

marked in (red). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nucleotide polymorphisms (SNPs) above the nominally significant

threshold in the combined cohort. Among these SNPs, 5 were nom-

inally significant in at least 1 cohort, whereas the other 4 SNPs

showed no significance in individual cohort. The OR values of each

SNP indicated a consistent direction of genetic effect on disease

risk between the Southern cohort and the Eastern cohort. Vari-

ant rs4698800 in EGF showed a nominally but consistently sig-

nificant association with AD risk in both the Southern ( p = 0.037,

OR = 1.19) and the Eastern cohort ( p = 2.93 × 10 −4 , OR = 1.32).

This SNP remained statistically significant in the combined cohort

( p = 3.24 × 10 −5 , OR = 1.26), even after the Bonferroni correction

(adjusted p = 5.54 × 10 −3 ). Another EGF variant rs10470911, which

is in strong LD with rs4698800 (r 2 > 0.8) ( Fig. 3 ), also showed

nominally significant association with AD risk in the combined co-

hort ( p = 0.013, OR = 1.14), adding more support for the associa-

tion of EGF variants with AD ( Table 3 ). 

3.5. No association of EGF variants with AD in European population 

To investigate whether the association of EGF variants with

AD is population specific, we retrieved the association results of

EGF SNPs from a large GWAS study ( Bellenguez et al., 2022 ). Six-

teen common variants and 7 rare variants identified in the cur-

rent study were reported in this latest GWAS study. None of these

variants of EGF was associated with AD in European population

in genome-wide level (Supplementary Table S6). LD plots showed

different linkage patterns of some of these SNPs with rs4698800

between Asian and European populations ( Fig. 3 ), suggesting that

population heterogeneity of EGF variants would affect AD suscepti-

bility. 

3.6. Regulatory effects of rs4698800 on EGF expression 

Since the AD-associated common EGF variants were located

in non-coding region, we evaluated the potentially regulatory ef-

fects of rs4698800 and rs10470911 on EGF expression by using

the expression quantitative trait loci (eQTL) datasets of human

brain ( Qi et al., 2018 ) and whole blood ( Lloyd-Jones et al., 2017 ).

Both rs4698800 and rs10470911 showed regulatory effects on EGF

mRNA expression in whole blood ( Lloyd-Jones et al., 2017 ) and

brain ( Qi et al., 2018 ) (Supplementary Table S7). In particular,

risk alleles rs4698800-T and rs10470911-G were associated with a

higher expression of EGF mRNA in brain tissues than the other al-

leles of both SNPs ( Fig. 3 ). We also investigated whether the in-

dex SNPs were located in regulatory elements of the EGF gene

using the functional genomic annotations of the ENCODE data

( Encode Project Consortium, 2012 ). The ENCODE annotations for

enhancers (H3K27ac), chromatin accessibility (DNaseI hypersensi-

tivity sites), and transcription factor binding sites (TFBSs) were

retrieved from the UCSC Genome Browser ( https://genome.ucsc.

edu/ ). We found that rs4698800 was predicted to be located in a
DNaseI hypersensitivity site and multiple TFBSs including FOSL2,

JUND and FOS (Supplementary Fig. S3), and rs10470911 was not

a regulatory variant. The regulatory effect of rs4698800 might ac-

count for the association with AD risk, and it would be rewarding

to confirm this speculation by experimental assays. 

3.7. Altered EGF mRNA expression in AD hippocampus 

Differential expression of EGF mRNA between AD patients and

controls were examined in 4 brain regions including entorhinal

cortex, hippocampus, temporal cortex, and frontal cortex using

the normalized microarray data compiled in our previous study

(http://www.alzdata.org) ( Xu et al., 2018 ). EGF was significantly up-

regulated in the hippocampus, which is one of the most vulnera-

ble brain regions in AD patients ( Mu and Gage, 2011 ) ( Fig. 4 ). Also,

we examined the mRNA expression pattern in 6 major brain cell

types ( Mathys et al., 2019 ). No change in the EGF mRNA expression

pattern was observed among subjects with no-pathology, early-

pathology or late-pathology (Supplementary Table S8 and S9), but

the level of EGFR was elevated in oligodendrocytes in AD brain as

compared to those without pathology (Supplementary Table S8). 

4. Discussion 

Many GFs, including the TGFs, IGFs, FGFs and NGFs, are

naturally expressed in the brain and play important roles in

the CNS, and have been suggested to influence AD progres-

sion ( Schindowski et al., 2008 ; Woodbury and Ikezu, 2014 ;

Lauzon et al., 2015 ). Recent genetic association studies have also

shown an association between GF genetic variants and AD risk

( He et al., 2021 ; Bellenguez et al., 2022 ). In this study, we exam-

ined the association of rare and common variants of GFs in Han

Chinese cohorts containing 1280 AD patients and 5044 controls

from the general population. By using the control samples from

the ChinaMAP ( Cao et al., 2020 ) for comparison, we were able to

minimize the limitation of small sample size and achieve a robust

association. We showed that EGF was a novel risk gene for AD in

Han Chinese. 

By using the gene-set-based burden test for rare variants in the

23 GF genes, we found that rare LoF variants in the GFs might con-

tribute to the susceptibility of AD, as LoF variants were associated

with AD in all 3 comparisons, with the most significant associa-

tion in the combined samples ( Table 1 ). The possibly pathogenic

and rare missense variants were not significantly associated with

AD in the Southern cohort, yet the association became significant

in the combined samples. These results indicated the involvement

of rare damaging variants, especially LoF of GFs in AD etiology. In

the gene-based burden test, several GFs showed nominally signif-

icant enrichment of rare damaging variants in AD patients. Some

GFs, including PDGFRB, EGFR, IGF1R , and LTBP1 showed associations

with AD only in 1 cohort ( Table 2 ). Limited sample size and/or

http://smart.embl-heidelberg.de/
https://genome.ucsc.edu/


X. Li, M. Xu, R. Bi et al. / Neurobiology of Aging 123 (2023) 170–181 177 

Fig. 3. Common variants of EGF were associated with AD risk and EGF mRNA expression. (a and b) LocusZoom plot of rs4698800 in Asian and European populations. p 

values of single variants of EGF in meta-analysis of the current study and summary statistics from the meta-analysis in GWAS study ( Bellenguez et al., 2022 ) were used. The 

queried SNP rs4698800 was marked in purple. The pairwise LD patterns of other SNPs with rs4698800 were indicated by different colors. (c and d) Effects of rs4698800 

and rs10470911 on EGF mRNA expression. Data was downloaded from GTEx portal ( https://www.gtexportal.org/home ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

clinical heterogeneity might contribute to this pattern, and inde-

pendent samples with sufficient demographic and clinical data are

needed for validating the association of these GFs with AD. 

Despite of the nominal associations, we observed a robust as-

sociation between EGF and AD, especially for LoF variants. More-

over, we also found that 2 common variants in EGF , out of 171

common variants of 23 GFs, were significantly associated with AD

risk in Han Chinese. These findings gave further support for an ac-

tive role of EGF in the development of AD. Note that the associ-

ation between EGF variants and AD showed a population specific

pattern, as it was not found in European populations and popula-

tions of European ancestry ( Bellenguez et al., 2022 ). These findings,

together with our previous observations for a population-specific

pattern of association between AD and certain genes ( Wang et al.,

2016 ; Zhang et al., 2016 ), indicated that population heterogene-

ity and genetic background may affect the genetic susceptibility

to human diseases. Intriguingly, the newly published large-scale

GWASs highlighted the role of EGFR in AD in European population

( He et al., 2021 ; Bellenguez et al., 2022 ), suggesting the robust in-
volvement of the EGF signaling in AD development. Genetic analy-

ses of different populations would provide convergent insights into

the pathogenesis of AD. 

Further characterization of the risk alleles of rs4698800 and

rs10470911 using available datasets showed that these risk alle-

les were associated with a relatively higher EGF mRNA expression

in the human brain ( Fig. 3 ). This result was consistent with the

observation for an increase in EGF mRNA expression in the hip-

pocampus of AD patients ( Fig. 4 ), indicating that upregulation of

EGF may be deleterious for AD. Our results were consistent with

a recent GWAS study that the protective allele of the lead vari-

ant in EGFR is associated with lower EGFR expression and that ge-

netic downregulation of EGFR expression is associated with lower

AD risk ( Bellenguez et al., 2022 ). The mRNA expression of EGFR

was elevated in oligodendrocytes in AD brain (Supplementary Ta-

ble S8) ( Mathys et al., 2019 ). All these studies indicated a higher

risk of AD in individuals with higher levels of EGF (our study) and

EGFR expression ( Mathys et al., 2019 ; Bellenguez et al., 2022 ), and

were different from the 2 studies showing a low plasma EGF level

https://www.gtexportal.org/home


178 X. Li, M. Xu, R. Bi et al. / Neurobiology of Aging 123 (2023) 170–181 

Fig. 4. Upregulation of EGF mRNA expression in hippocampus tissue of AD patients. The mRNA expression data of EGF from entorhinal cortex (a), hippocampus (b), frontal 

cortex (c) and temporal cortex (d) were retrieved from the AlzData (www.alzdata.org) ( Xu et al., 2018 ). Two-tailed Student’s t-test was used to test for the statistical 

difference between AD patients and controls. Ns, not significant; ∗∗p < 0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in AD-MCI patients (Lim et al., 2016) and a potential prevention

effect of EGF on APOE4 and Aß-induced cognitive decline in fe-

male mice aged 8 months ( Thomas et al., 2016 ). By using single

cell data from AD patients reported by Mathys et al. (2019) , we

found that EGF mRNA expression showed no apparent alteration

in each of the 6 major cell types in AD brain ( Supplementary Ta-

ble S8 and S9 ) . These results suggested that the effect of EGF on

AD should be considered comprehensively in the context of disease

stages and tissue/cell types. As we had no genotype information for

these donors for single cell transcriptome analysis, we speculated

that these donors may not contain the EGF risk alleles found in

Han Chinese, because the association of EGF genetic variants with

AD showed an apparent population-specific feature as described in

the text above. 

This study had several limitations. First, although our sample

size had a reasonably good statistical power for association analy-

sis, the sample size was still relatively small. The potential popu-

lation substructure may further blur the association of EGF with

AD. Second, the different sequencing depth between ChinaMAP

( Cao et al., 2020 ) and our targeted sequencing study and the batch
effect may also affect the identification of potential risk variants.

Third, we did not perform any functional characterization for the

potential damaging variants identified in EGF , nor characterize the

function of EGF in the development of AD. More focused studies

are warranted to confirm the association between EGF variants and

AD and to characterize the role of this growth factor in AD. 

In short, we used targeted sequencing to screen for genetic vari-

ants in 23 GFs to discern potential association with AD. Our results

indicate EGF to be a novel risk gene for AD in Han Chinese popula-

tion, with an enrichment of damaging rare missense mutations and

an upregulated mRNA expression in AD patients. Validation studies

with independent large samples and functional assays are needed

to investigate the effect of increased EGF signaling on the develop-

ment and progression of AD. 
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Online Supplementary Materials 
 
This file contains 9 supplementary tables and 3 supplementary figures. 
 
 
Supplementary Table S1 
Sequence coverage of each gene in the targeted sequencing 

Gene 
Mean 
depth 

10× coverage 
(%) 

20× coverage 
(%) 

30× coverage 
(%) 

50× coverage 
(%) 

TGFB2 147.54 100.00 100.00 95.86 90.31 
TGFBR1 160.30 88.32 88.32 88.32 88.32 
TGFBR2 120.41 100.00 96.34 90.93 85.07 
LTBP1 145.93 98.26 93.01 92.16 89.73 
EGF 165.36 100.00 100.00 100.00 99.98 
EGFR 119.27 99.21 95.93 92.19 89.27 
HBEGF 120.38 100.00 93.17 86.03 70.48 
INHBC 125.12 100.00 100.00 100.00 100.00 
IGF1 159.22 100.00 100.00 100.00 95.50 
IGF1R 152.05 100.00 99.93 99.33 96.52 
IGF2 105.67 100.00 92.70 85.89 73.05 
IGF2R 141.68 96.63 96.13 96.13 93.97 
PDGFRA 168.49 100.00 100.00 100.00 99.81 
PDGFRB 107.74 100.00 100.00 99.74 88.89 
PDGFC 187.67 100.00 100.00 100.00 100.00 
FGFR2 158.01 97.41 96.02 95.17 92.72 
VEGFA 101.54 100.00 100.00 96.23 84.38 
VEGFC 151.42 99.82 99.82 87.54 81.72 
KDR 159.64 100.00 100.00 100.00 94.75 
ANGPTL1 245.95 100.00 100.00 100.00 100.00 
HGF 162.23 100.00 100.00 100.00 100.00 
BDNF 234.00 100.00 100.00 100.00 99.17 
GDNF 173.11 100.00 98.74 95.41 77.50 

Mean depth of a gene was calculated by an equation = (total sequence data / gene length). 
N× coverage was calculated by an equation = ((the total number of nucleobases in a gene that 
were sequenced over N times / total gene length) × 100%). 
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Supplementary Table S2 
Rare variants of 23 growth factor genes in Han Chinese  
 
This table is too big and is presented as an Excel file. 
 
Rare variants were defined by an MAF < 0.01 in the control sample. All variants 
listed in this table had a sequencing coverage ≥ 20×. 
 
 
Supplementary Table S3 
Association of rare variants of EGF with AD in Han Chinese  
 
This table is too big and is presented as an Excel file. 
 
 
Supplementary Table S4 
Allele frequencies of EGF rare variants in East Asian populations from the gnomAD 
dataset (https://gnomad.broadinstitute.org/) (Karczewski et al., 2020) 
 
This table is too big and is presented as an Excel file. 
 
 
Supplementary Table S5 
Association of common variants in 23 growth factor genes with AD in Han Chinese 
 
This table is too big and is presented as an Excel file. 

https://gnomad.broadinstitute.org/
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Supplementary Table S6 
Association of EGF variants with AD in European populations 

Variant IDa P-value Chr:positionb Allelec Frequencyd ORe 95% CIf Beta SEg 
rs4444903 0.869  4:109912954 A/G 0.5961 0.999 0.983-1.015 -0.0014 0.0082 
rs11568849 0.421  4:109913381 A/C 0.998 0.88 0.645-1.201 -0.1277 0.1588 
rs11568886 0.236  4:109941207 T/C 0.0042 1.145 0.915-1.434 0.1358 0.1146 
rs10470911 0.766  4:109944115 T/G 0.662 1.003 0.986-1.02 0.0025 0.0086 
rs4698755 0.810  4:109945022 A/C 0.6586 1.002 0.986-1.019 0.0021 0.0085 
rs4698756 0.799  4:109945286 A/G 0.3414 0.998 0.981-1.015 -0.0022 0.0085 
rs4698800 0.764  4:109945352 T/C 0.3391 0.997 0.981-1.014 -0.0026 0.0085 
rs11568927 0.088  4:109959477 T/C 0.0036 1.297 0.962-1.748 0.2598 0.1523 
rs11568941 0.104  4:109961824 T/G 0.0036 1.282 0.95-1.73 0.2487 0.1529 
rs11568942 0.122  4:109961840 T/C 0.9955 1.129 0.968-1.316 0.1212 0.0784 
rs11568943 0.440  4:109961965 A/G 0.0632 1.013 0.98-1.047 0.0129 0.0167 
rs3733628 0.081  4:109963140 T/C 0.0036 1.305 0.967-1.76 0.266 0.1526 
rs11568990 0.279  4:109974691 A/C 0.0041 1.163 0.885-1.528 0.1509 0.1393 
rs2302135 0.111  4:109979991 A/G 0.9955 0.849 0.695-1.038 -0.1634 0.1026 
rs2237051 0.338  4:109980042 A/G 0.3825 0.992 0.976-1.008 -0.008 0.0083 
rs11569017 0.656  4:109980955 A/T 0.9457 1.008 0.973-1.044 0.008 0.0179 
rs11569018h 0.249  4:109981010 A/G 0.0018 1.212 0.874-1.681 0.1924 0.1669 
rs6836684h 0.850  4:109987933 T/C 0.0024 0.979 0.788-1.217 -0.021 0.1108 
rs4698803h 0.610  4:109993271 A/T 0.2072 1.005 0.986-1.025 0.0052 0.0101 
rs75935899h 0.572  4:109999791 A/G 0.002 0.925 0.705-1.213 -0.0781 0.1383 
rs11568937h 0.564  4:109960895 T/C 0.966 0.987 0.944-1.032 -0.0131 0.0227 
rs11568953h 0.803  4:109963240 A/G 0.9839 1.008 0.944-1.077 0.0083 0.0334 
rs11568993h 0.004  4:109976159 T/C 0.0837 0.959 0.932-0.987 -0.042 0.0147 
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aSummary statistics from the meta-analysis (Bellenguez et al., 2022) are available through the National Human Genome Research Institute-European Bioinformatics 
Institute GWAS catalog under accession number GCST90027158 (https://www.ebi.ac.uk/gwas/). 
bChr:position, position were shown in GRCh38 
cEffect allele / other allele 
dFrequency of effect allele 
eOR, odds ratio of the effect allele  
f95% confidence interval of OR 
gStandard error 
hRare variants (MAF < 0.01) in Han Chinese under study 
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Supplementary Table S7 
eQTL effect of rs4698800 and rs10470911 on EGF expression 

SNP eQTL dataset A1/A2a Freqb Beta SEc P-value 
rs4698800 Brain_eMeta (Qi et al., 2018) T/C 0.346 0.220 0.072 0.0022 
rs4698800 cage_whole_blood (Lloyd-Jones et al., 2017) T/C 0.360 0.070 0.028 0.0118 
rs10470911 Brain_eMeta (Qi et al., 2018) G/T 0.336 0.235 0.072 0.0012 
rs10470911 cage_whole_blood (Lloyd-Jones et al., 2017) G/T 0.357 0.063 0.028 0.0238 

eQTL datasets include peripheral blood eQTL data from the Consortium for the Architecture of 
Gene Expression (CAGE) (Lloyd-Jones et al., 2017) and brain eQTL data from a meta-analysis 
(Qi et al., 2018) of GTEx brain (GTEx Consortium et al., 2017), CommonMind Consortium 
(CMC) (Fromer et al., 2016) and ROSMAP (Ng et al., 2017) 
aEffect allele/other allele 
bFrequency of the effect allele in the respective eQTL study 
cSE, standard error 
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Supplementary Table S8 
mRNA expression of 23 growth factors in six types of cells based on scRNA-seq data 
of human brain tissues (no-pathology vs. pathology) 
 
This table is too big and is presented as an Excel file. 
 
Data in this table were retrieved from Mathys et al. (2019). We quoted notes in the 
Excel file from the original paper for the convenience of the reader.  
 
 
Supplementary Table S9 
mRNA expression of 23 growth factors in six types of cells based on scRNA-seq data 
of human brain tissues (early-pathology vs. late-pathology) 
 
This table is too big and is presented as an Excel file. 
 
Data in this table were retrieved from Mathys et al. (2019). We quoted notes in the 
Excel file from the original paper for the convenience of the reader.  
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Supplementary Fig. S1. Validation of rare variant rs556105355 C>T in T allele 
carriers (n = 7) and non-carriers (n = 2) by Sanger sequencing. The ID of each sample 
was shown in the left of the corresponding sequences. We used a primer pair 
rs556105355-F (5’-GGCTGAGGTGGAAGGATCAC-3’) / rs556105355-R 
(5’-CTCCATTTGGTGTGGTGGGT-3’) to amplify and sequence a 506 bp fragment 
harboring rs556105355. *, stop codon.
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Supplementary Fig. S2. Power estimate for the case-control association analysis. 
Statistical power was computed under the gene only hypothesis and log additive 
model, with the following parameters: risk allele ranges from 0.01 to 0.5 in 
increments of 0.01; overall disease risk in the general population = 0.03; sample size 
= 1280 cases vs. 5044 controls; OR = 1.25. 
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Supplementary Fig. S3. Regulatory functional annotation of rs4698800 (a) and 
rs10470911 (b). Functional genomic annotations for enhancers (H3K27ac), chromatin 
accessibility (DNaseI hypersensitivity sites), and transcription factor binding sites 
(TFBSs) of each target variant were based on the ENCODE data retrieved from the 
UCSC Genome Browser (https://genome.ucsc.edu/). The target variants were marked 
with a red box.

a 

b 
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