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The GWAS Risk Genes for Depression
May Be Actively Involved in Alzheimer’s
Disease
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Abstract. Depression is one of the most frequent psychiatric symptoms observed in people during the development of
Alzheimer’s disease (AD). We hypothesized that genetic factors conferring risk of depression might affect AD development.
In this study, we screened 31 genes, which were located in 19 risk loci for major depressive disorder (MDD) identified by two
recent large genome-wide association studies (GWAS), in AD patients at the genomic and transcriptomic levels. Association
analysis of common variants was performed by using summary statistics of the International Genomics of Alzheimer’s Project
(IGAP), and association analysis of rare variants was conducted by sequencing the entire coding region of the 31 MDD risk
genes in 107 Han Chinese patients with early-onset and/or familial AD. We also quantified the mRNA expression alterations
of these MDD risk genes in brain tissues of AD patients and AD mouse models, followed by protein-protein interaction
network prediction to show their potential effects in AD pathways. We found that common and rare variants of L3MBTL2
were significantly associated with AD. mRNA expression levels of 18 MDD risk genes, in particular SORCS3 and OAT, were
differentially expressed in AD brain tissues. 13 MDD risk genes were predicted to physically interact with core AD genes.
The involvement of HACE1, NEGR1, and SLC6A15 in AD was supported by convergent lines of evidence. Taken together,
our results showed that MDD risk genes might play an active role in AD pathology and supported the notion that depression
might be the “common cold” of psychiatry.
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INTRODUCTION

Alzheimer’s disease (AD), the most common neu-
rodegenerative disease, is becoming a serious global
health issue [1, 2]. It is generally considered as a
cognitive disorder, resulting from accumulation of
extracellular amyloid-� (A�) plaques and intracel-
lular neurofibrillary tangles, neuron loss, cerebral
atrophy, and neuroinflammation [1, 2]. Almost all
AD patients have neuropsychiatric symptoms dur-
ing the course of the disease [3]. Depression is one
of the most frequent psychiatric symptoms observed
in the development of mild cognitive impairment
(MCI) and AD [3, 4]. The symptoms of depression,
technically referred to as major depressive disorder
(MDD), are clinically heterogeneous, with a lifetime
prevalence of approximately 16% [5, 6]. Depres-
sion and AD are common conditions in older age,
with impaired cognition [5]. However, the relation-
ship between depression and AD is elusive. It is
unclear whether the comorbidity of MDD in AD is the
cause or just a byproduct. Besides the comorbidity, it
has been reported that a history of depression might
increase risk of developing AD, and people with
both MCI and a history of depression would progress
to AD at a much higher rate [7–10]. Other studies
also suggested that depression may be a prodromal
symptom of AD [11–13]. These reports indicated a
potentially causal role of depression in the course
of AD.

Genetic factors account for ∼37% of liability to
MDD and depressive symptoms [14], while AD has
a high heritability (∼79%) [1, 15]. It is reasonable
to hypothesize that genetic factors conferring risk of
depression might also underlie the genetic basis of
AD, with shared risk alleles for both MDD and AD.
Indeed, our previous findings have shown that the
MDD-risk allele CFH Y402H [16] also affects AD
risk [17]. Moreover, the MEF2C gene, identified by
the most recent and largest genome-wide association
study (GWAS) for MDD [18], was a well-established
AD risk gene in the largest GWAS for AD [19]. There
might be more depression risk genes involved in AD,
yet this kind of investigation was highly dependent on
the reliability of recognized MDD risk genes. Numer-
ous GWASs for MDD have been conducted in recent
years, but no genome-wide significant risk locus has
been identified due to clinical heterogeneity of the
disorder [20–22]. Recently, two large scale GWASs
for MDD had successfully identified several robust
risk loci: the CONVERGE performed a GWAS for
MDD in a phenotypically homogeneous sample of

female Han Chinese and identified two loci exceeding
the genome-wide significance [23]; the largest meta-
analysis combining datasets of 23andMe and MDD
GWAS from the Psychiatric Genomics Consortium
(PGC) identified 17 single nucleotide polymorphisms
(SNPs) showing the genome-wide significance [18].
The MDD risk gene list of these two studies [18, 23]
offered a start point for us to test a hypothesis of com-
mon genetic basis of MDD and AD. In this study, we
analyzed 31 genes that were located in the reported
MDD risk loci [18, 23] in AD at the genomic and
transcriptomic levels to test this hypothesis.

MATERIALS AND METHODS

Assignment of MDD risk genes

Though there were several GWASs for MDD
[20–22], genome-wide hits were only observed in the
most recent 23andMe-based GWAS in populations of
European ancestry [18] and the CONVERGE study in
Han Chinese populations [23]. The 23andMe-based
GWAS meta-analysis combined three data sets: Dis-
covery phase, 75,607 cases and 231,747 controls;
PGC MDD, 9,240 cases and 9,519 controls; Repli-
cation stage, 45,773 cases and 106,354 controls,
resulted in the largest sample size in MDD genetic
research [18]. A total of 17 independent genome-
wide significant SNPs from 15 loci, covering 21
surrounding genes (defined by a distance of <300 kb
window within the GWAS loci), were identified and
validated in the original study [18] (Supplementary
Table 1). The CONVERGE Consortium performed
whole genome sequencing of 5,303 MDD cases and
5,337 controls at a lower coverage and identified
two loci reaching a genome-wide significance, which
could be validated in 3,231 cases and 3,186 controls
[23]. The two loci contained 10 surrounding genes in
∼500 kb of the signal as shown in the original study
[23] (Supplementary Table 1). These 19 SNPs repre-
sented the most robust MDD risk loci ever identified,
albeit it was yet unknown which gene is the causal
gene targeted by the GWAS hits and more indepen-
dent validations should be performed to confirm these
risk loci. In this study, the 19 proxy MDD GWAS
SNPs, as well as the 31 genes (including 21 for the
23andMe-based GWAS [18] and 10 for the CON-
VERGE [23]) within the 19 GWAS loci (as defined
by the original studies [18, 23]) were subjected to
comprehensive analyses in AD datasets (Fig. 1 and
Supplementary Table 1).
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Fig. 1. Workflow and summary of the current study. We aimed to
systematically investigate whether candidate genes located in the
major depressive disorder (MDD)-associated loci were involved
in Alzheimer’s disease (AD). Genome-wide significant hits from
the largest meta-analysis combining 23andMe and MDD GWAS
from the Psychiatric Genomics Consortium (PGC) in populations
of European ancestry [18], as well as the CONVERGE study in
Chinese population [23], were used to identify potential MDD
candidate genes. We initially checked whether common variants
within these MDD-associated GWAS loci were associated with
AD by using summary data of the International Genomics of
Alzheimer’s Project (IGAP) [19]. In addition to common vari-
ant association, we examined the entire coding regions of the 31
MDD candidate genes in 107 Han Chinese patients with early-
onset and/or familial AD for rare variants. Transcriptomic profiling
were performed using GEO data as processed in our recent report
[33]. Protein-protein interaction network was constructed using
online tool STRING (https://string-db.org/).

Association of common variants in MDD risk
genes with AD using publicly available GWAS
data

Involvement of MDD risk genes in AD was ini-
tially evaluated by using the publicly available Inter-
national Genomics of Alzheimer’s Project (IGAP)
GWAS data [19], which focused on the associa-
tion of common variants with AD susceptibility. The
IGAP data contained 7,055,881 SNPs in 17,008 AD
cases and 37,154 controls [19]. Summary statistics
were downloaded from http://web.pasteur-lille.fr/
en/recherche/u744/igap/igap download.php. Single-
site association results of all variants within 10
kb of the MDD risk genes were retrieved. The
single-site association results were subjected to
the gene-based test using the online tool Ver-
satile Gene-based Association Study (VEGAS2
v02, https://vegas2.qimrberghofer.edu.au/) [24, 25].
Detailed methodology of the gene-based test was
described in the original study [24]. Briefly, this test
considers a full set of markers within a gene and the
linkage disequilibrium information between markers
by using simulations [24].

Identification of coding variants in MDD risk
genes in AD patients using next generation
sequencing

The coding and flanking regions (UTRs and
exons) of the 31 MDD risk genes were analyzed
in 107 Han Chinese patients with AD by using
next generation sequencing, to identify potentially
causal variants. We focused on these AD patients
that had an early onset age <55 years old and/or
a positive family history (46.7% females, age
64.6 ± 10.29 years, 37.4% APOE �4 carriers), as
these patients might be geneticically informative
comparted with sporadic or late-onset AD. The tar-
geted regions were captured by Nimblegene SeqCap
Kit. Processed final libraries for each individual
were pooled and sequenced on Illumina HiSeq2500
or 4000 (150-bp paired-end, Illumina, San Diego,
CA, USA). Low quality raw reads were removed
using Trimmomatic-0.32 [26]. Quality-filtered
sequenced reads were aligned to the human genome
reference assembly (build GRCh37/hg19) using
Burrows-Wheeler Aligner (BWA) [27]. Picard Tools
(http://broadinstitute.github.io/picard/) were used
to flag duplicated reads. SNP call was performed
through the canonical pipeline recommended
by the Best Practice Variant Detection with the
GATK (Genome Analysis Toolkit, https://www.
broadinstitute.org/gatk/guide/best-practices) [28].
Variant Quality Score Recalibration (VQSR) from
the GATK package was used to filter spurious
variants due to sequencing errors and/or mapping
artifacts. The ANNOVAR was used to annotate
variants, which were assigned into different func-
tional categories according to their locations and
expected effects on the encoded gene products [29].
Missense, nonsense, frameshift, and splice site
variants were defined as functional variants. We
used the exome data of 160 Chinese individuals
(40.6% females, age 52.6 ± 16.5 years) showing
no signs of memory loss and no familial history
of neurodegenerative disorders [30] as a control
sample. To increase the sample size of controls,
the whole genome data of Han Chinese in Beijing
(CHB, N = 103) and Southern Han Chinese (CHS,
N = 105) from the 1000 Genome Project phase
3 [31] were pooled with the exome data of 160
Chinese individuals [30] as the population control
(N = 368). Allele frequency data of 4327 East Asians
from the ExAC (Exome Aggregation Consortium,
http://exac.broadinstitute.org/) [32] was used as
another control to validate the results in Chinese.

https://string-db.org/
http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
http://broadinstitute.github.io/picard/
http://exac.broadinstitute.org/
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Expression changes of the MDD risk genes in AD
brain samples and mouse models using our
previously processed data

In addition to genomic analysis, we analyzed the
mRNA expression profiles of the MDD risk genes
in four AD-affected brain regions (frontal cortex
tissues of 413 patient and 284 controls; temporal
cortex tissues of 158 patients and 174 controls;
hippocampus tissues of 74 patients and 65 con-
trols; entorhinal cortex tissues of 39 patients and
39 controls), following the approach described in
our recent study [33]. In brief, raw microarray
data for each brain region was retrieved from the
NCBI Gene Expression Omnibus database (GEO,
http://www.ncbi.nlm.nih.gov/geo/) and renormalized
as one combined dataset with an enlarged sample
size. Details of data sources and processing were
described in our previous study (Ref. [33] and ref-
erences therein), and the expression data collection
and renormalized expression profiles can be accessed
through our database http://www.alzdata.org [33].

In addition to the differential expression analysis
in brain tissues of AD patients, we investigated the
expression alterations of these MDD risk genes in
brain tissues of mouse AD models [34]. In brief,
the transgenic mouse models with human mutant
genes responsible for familial AD, which showed
the presence of AD pathological features, were
used for the genome-wide microarrays [34]. Hip-
pocampus and cortex tissues were tested by using
the MouseRef8 v2 (Illumina) microarray platform.
Microarray data was processed and shared by the
Mouse Dementia Network, available at Mouseac
(http://www.mouseac.org). More details about this
dataset were described in the original study [34]. Cor-
relation between mRNA expression levels of genes
of interest and the quantified level of pathology (A�
plaques and tau burden) was measured based on the
processed data, using the Pearson correlation test, as
had been described in our recent study [33].

Protein-protein interaction network of the MDD
risk genes with AD core genes

To evaluate the involvement of these MDD risk
genes in the molecular network of AD, we per-
formed the protein-protein interaction (PPI) analysis
using proteins of the 31 MDD risk genes, together
with 43 known AD genes (identified by GWAS and
linkage studies [35]) using the online tool STRING
(https://string-db.org/).

Convergent functional genomics (CFG) analysis

To cross-validate the involvement of target genes
in AD at different levels, we used the convergent
functional genomic (CFG) approach [36, 37] that
integrates multiple lines of AD-related evidence, as
we had done recently [33]. A gene was defined as
AD-related if it: 1) showed a significant association
with AD at the gene-based test using the IGAP data
[19]; 2) had rare variants that were significantly asso-
ciated with AD in 107 Han Chinese patients with AD;
3) was differentially expressed in any brain tissue of
AD patients according to the AlzData.org [33]; 4)
was correlated with AD pathology in AD mice based
on the Mouseac (http://www.mouseac.org) [34]; or
5) was involved in the PPI network that was formed
by the AD core genes. For each line of evidence, one
point was assigned if the above fact was observed;
otherwise zero point. This integration system led to
CFG scores ranging from 0 to 5 points.

RESULTS

Associations of common and rare variants of the
MDD risk genes with AD

Among the 19 genome-wide significant MDD-
related SNPs (Supplementary Table 1), two SNPs
(L3MBTL2 rs2179744 and intergenic rs4543289)
showed positive associations with AD in IGAP
dataset [19]. It is reasonable that other SNPs within
the 31 MDD risk genes, rather than the 19 GWAS
hits, might be associated with AD. We searched
for other SNPs within the 31 MDD risk genes
and found that 21 out of the 31 genes had SNPs
showing nominally significant associations (p < 0.05)
with AD (Table 1). Among them, three genes,
SUGT1 (Gene-based p = 1.97 × 10–3), L3MBTL2
(Gene-based p = 9.60 × 10–3), and the known AD
gene MEF2C [19] (Gene-based p = 1.19 × 10−2),
were significantly associated with AD at the gene
level (Table 1).

Besides associations of common variants with AD,
we analyzed the entire coding region of the 31 genes
in 107 Han Chinese patients with early-onset and/or
familial AD using targeted sequencing, to investi-
gate whether there was an enrichment of rare coding
variants in these MDD risk genes in AD patients
(Supplementary Table 2). Six genes, TMEM161B,
L3MBTL2, SLC6A15, KIAA0020, LHPP, and MYPN,
had a missense variant with nominally significance in
AD (Table 2). Two of them (L3MBTL2 and SLC6A15)

http://www.ncbi.nlm.nih.gov/geo/
http://www.alzdata.org
http://www.mouseac.org
https://string-db.org/
http://www.mouseac.org
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Table 1
List of MDD risk genes and association analysis of common variants in the MDD GWAS loci with AD

Chromosome Gene No. of Start Stop Gene-based Top SNP Top SNP
SNPs p-value p-value

13 SUGT1 83 53226830 53262433 0.00197 rs4885767 0.00079
22 L3MBTL2 80 41601312 41627275 0.00960 rs9611520 0.00014
5 MEF2C 288 88014057 88199922 0.01190 rs3850651 0.00028
15 MEIS2 392 37183221 37393500 0.05030 rs4924109 0.00348
9 KIAA0020 80 2804154 2844130 0.05889 rs10217194 0.00709
1 RERE 583 8412463 8877699 0.08392 rs112053331 0.00090
1 NEGR1 739 71868624 72748277 0.10689 rs522395 0.00011
9 RFX3 574 3218296 3526001 0.16583 rs62526377 0.00487
10 FAM53B 227 126307862 126432930 0.22478 rs11245345 0.02208
10 SORCS3 675 106400858 107024993 0.29970 rs112898269 0.00344
6 LIN28B 128 105404922 105531207 0.37962 rs10457125 0.01275
13 OLFM4 72 53602875 53626196 0.39960 rs3803259 0.03261
9 PAX5 671 36833271 37034476 0.40160 rs138898773 0.00800
10 CTNNA3 971 67672275 69455949 0.41658 rs116950805 0.00372
5 TMEM161B 106 87485449 87564696 0.43157 rs115873146 0.00750
12 SLC6A15 60 85253266 85306608 0.47453 rs79265864 0.12470
3 MLF1 106 158288952 158324249 0.51648 rs7617983 0.11220
10 METTL10 50 126447405 126480439 0.58042 rs11245363 0.07227
10 LHPP 743 126150340 126302710 0.60140 rs60015709 0.01357
15 TMCO5A 31 38227456 38243623 0.69431 rs112187315 0.17920
6 HACE1 264 105175967 105307794 0.77323 rs79147057 0.02067
10 MYPN 387 69865873 69971773 0.79321 rs76451279 0.00867
10 HERC4 244 69681655 69835103 0.80120 rs17454621 0.08052
10 SIRT1 79 69644426 69678147 0.82118 rs10997864 0.04805
10 FAM175B 44 126490353 126525239 0.82717 rs2277263 0.12360
10 DNAJC12 56 69556426 69597937 0.84615 rs41299238 0.13750
11 PAX6 41 31806339 31839509 0.89710 rs113859447 0.22190
3 RSRC1 448 157827840 158262624 0.89710 rs144747720 0.00288
10 OAT 66 126085871 126107545 0.90909 rs140350519 0.08203
2 VRK2 434 58134785 58387055 0.98402 rs140500963 0.01353

Note: No. of SNPs, number of SNPs included in the gene-based test. Start/Stop, range of target gene (position based on human genome
reference assembly (build GRCh37/hg19)). The gene-based p-value was calculated by the online tool Versatile Gene-based Association Study
(VEGAS2 v02, https://vegas2.qimrberghofer.edu.au/) [24, 25]. Top SNP and Top SNP p-value were retrieved from the summary statistics
of the International Genomics of Alzheimer’s Project (IGAP) [19]. Significant p-values (<0.05) were marked in bold. One (MIR759) out of
the 31 genes had no data available.

showed consistent associations when compared with
both our in-house control [30] and the ExAC refer-
ence control [32]. Notably, L3MBTL2, which was
also associated with AD in the common variant
analysis, had a rare missense variant rs3804097
(p. I7V) that was enriched in AD (MAF = 4.7%)
compared with our in-house controls (MAF = 1.6%,
p = 1.63 × 10−2, OR = 2.99) and the ExAC reference
control (MAF = 2.7%, p = 8.60 × 10−2, OR = 1.78).

Differential gene expression of MDD genes in
brain tissues of AD patients and mice

To further investigate the involvement of MDD
risk genes in AD development, we analyzed the
mRNA expression profiles of the MDD genes in
four brain tissues (hippocampus, entorhinal cortex,
frontal cortex, and temporal cortex) of AD patients

and controls ([33] and references therein). Eigh-
teen genes showed a nominally significant (p < 0.05)
differential expression in AD brain tissues com-
pared with that of controls (Table 3). In particularly,
five genes (MEF2C, SORCS3, OAT, DNAJC12,
and SIRT1) were consistently altered in all four
brain regions, with SIRT1 being upregulated and
the other four genes being downregulated in AD
brain tissues (Table 3). We then checked the dif-
ferentially expressed pattern of these 18 genes in
hippocampus tissues of AD mouse models [34].
Seven genes (FAM53B, HACE1, NEGR1, SORCS3,
OAT, DNAJC12, and SLC6A15) were significantly
correlated with AD pathology burden (number of
amyloid plaques or tau tangles) (Table 3). Of note,
mRNA expression levels of SUGT1 and L3MBTL2,
which showed a genetic association with AD, had no
expression alteration in AD brain tissues.

https://vegas2.qimrberghofer.edu.au/
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Table 2
Significant coding variants in MDD risk genes in 107 AD patients

Position SNP Allele Gene Mutation AC/AN p-value OR AC/AN p-value OR
AD CN ExAC

chr5:87493525 rs75451667 C/T TMEM161B p. V383I# 41/212 101/736 0.049 1.51 1352/7864 0.407 1.15
chr22:41601385 rs3804097 A/G L3MBTL2 p. I7V 10/212 12/736 0.016 2.99 213/7864 0.086 1.78
chr12:85257227 rs3782369 A/C SLC6A15 p. I603M# 3/212 0/366 0.049 12.25 26/7858 0.040 4.32
chr9:2828765 rs2173904 C/G KIAA0020 p. R289P 129/212 380/736 0.019 1.45 4757/7852 1.000 1.01
chr10:126172863 rs6597801 A/G LHPP p.Q94R 205/212 682/736 0.038 2.32 7429/7866 0.219 1.72
chr10:69934258 rs3814182 C/G MYPN p.S803R# 87/212 251/736 0.073 1.34 2837/7816 0.169 1.22

Note: Position was based on human genome reference assembly (build GRCh37/hg19); Allele, reference allele/alternative allele; AC, allele count; AN, allele number; OR, odds ratio; ExAC,
Exome Aggregation Consortium (http://exac.broadinstitute.org/) [32]; AD, 107 subjects with Alzheimer’s disease; CN, 368 subjects combining 160 in-house non-dementia individuals [30] and
208 Chinese from the 1000 Genome project [31]. Significant p-values (<0.05) were marked in bold. The ANNOVAR was used to annotate variants, which were assigned into different functional
categories according to their locations and expected effect on the encoded gene products [29]. Missense, nonsense, frameshift, and splice site variants were defined as functional variants. #Coding
variants predicted to be damaging according to ANNOVAR annotation. All rare coding variants were listed in Supplementary Table 2.

http://exac.broadinstitute.org/
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Table 3
mRNA expression changes of MDD risk genes in brain tissues of AD patients and AD mouse models

Human AD brain Mouse AD model
Gene Entorhinal Cortex Hippocampus Temporal Cortex Frontal Cortex A� Tau

log2FC p-value log2FC p-value log2FC p-value log2FC p-value r p-value r p-value

CTNNA3 0.17 0.422 –0.02 0.877 –0.05 0.847 –0.13 0.209 0.419463 0.0063336 0.077534 0.7835861
DNAJC12 –0.49 0.003 –0.38 0.001 –0.68 2.1E-05 –0.16 0.015 –0.35167 0.0241533 –0.37774 0.16509865
FAM175B –0.13 0.095 –0.08 0.270 –0.17 0.088 –0.07 0.062 NA NA NA NA
FAM53B 0.30 0.018 0.13 0.302 0.07 0.681 0.17 0.022 0.594041 4.23E-05 0.060471 0.83048573
HACE1 –0.41 0.002 –0.12 0.108 –0.28 0.097 NA NA –0.33535 0.0320821 –0.4933 0.06167796
HERC4 0.06 0.550 0.07 0.427 –0.15 0.234 0.13 0.055 –0.5922 4.53E-05 0.074053 0.79310244
KIAA0020 0.14 0.131 0.01 0.921 –0.05 0.653 0.10 0.034 NA NA NA NA
L3MBTL2 –0.06 0.431 0.06 0.449 –0.02 0.833 NA NA –0.22469 0.157844013 –0.45847 0.08565248
LHPP –0.05 0.781 0.04 0.723 0.33 0.025 0.23 0.009 NA NA NA NA
LIN28B –0.33 0.011 –0.43 0.008 0.08 0.688 NA NA NA NA NA NA
MEF2C –0.72 0.002 –0.56 1.6E-05 –0.91 6.3E-06 –0.25 0.010 –0.18712 0.241395885 –0.19811 0.47908788
MEIS2 0.11 0.271 0.20 0.056 0.34 0.028 0.06 0.324 –0.27327 0.083855988 –0.87303 2.15E-05
METTL10 0.01 0.909 –0.10 0.127 –0.12 0.381 –0.19 0.009 NA NA NA NA
MLF1 0.13 0.251 0.11 0.252 –0.15 0.241 –0.09 0.150 –0.03942 0.806703421 0.115341 0.6822973
MYPN 0.29 0.090 –0.15 0.257 0.07 0.777 NA NA NA NA NA NA
NEGR1 –0.51 0.002 –0.18 0.099 –0.49 0.001 NA NA –0.406 0.0084445 –0.51538 0.0492703
OAT –0.36 0.015 –0.22 0.005 –0.60 0.001 –0.25 0.006 0.727227 7.23E-08 0.53886 0.0382033
OLFM4 –0.67 0.001 0.09 0.611 –0.29 0.146 –0.27 0.075 –0.04742 0.76845086 0.215175 0.44120421
PAX5 –0.09 0.285 –0.04 0.699 0.11 0.561 –0.05 0.473 NA NA NA NA
PAX6 0.16 0.192 0.33 1.6E-04 0.68 6.5E-07 0.21 0.008 NA NA NA NA
RERE 0.03 0.817 0.14 0.116 –0.21 0.228 0.11 0.037 NA NA NA NA
RFX3 0.25 0.002 0.21 0.010 –0.20 0.041 0.15 0.019 0.212547 0.182144629 –0.00283 0.99201833
RSRC1 –0.07 0.522 –0.10 0.298 –0.46 0.003 –0.12 0.196 NA NA NA NA
SIRT1 0.36 0.014 0.24 0.010 0.21 0.035 0.21 0.005 0.058888 0.714570112 –0.3476 0.20425918
SLC6A15 –0.22 0.130 –0.10 0.288 –0.61 1.9E-04 –0.17 0.087 –0.28047 0.075699482 –0.54521 0.0355581
SORCS3 –0.38 0.038 –0.25 0.031 –0.77 1.2E-04 –0.31 1.9E-05 –0.76766 4.73E-09 –0.62775 0.0122258
SUGT1 0.13 0.129 –0.01 0.883 0.09 0.408 NA NA –0.24314 0.125564623 –0.09847 0.72699952
TMCO5A –0.07 0.636 –0.03 0.833 0.01 0.969 NA NA NA NA NA NA
TMEM161B 0.16 0.059 0.04 0.585 –0.12 0.274 NA NA NA NA NA NA
VRK2 0.28 0.063 0.01 0.903 0.07 0.687 0.05 0.626 0.498012 0.0009218 0.556909 0.0310465

Note: log2FC, log2 of fold change of gene expression level compared with that of control; r, Pearson correlation; Expression microarray data of the MDD genes in four brain tissues (hippocampus,
entorhinal cortex, frontal cortex, and temporal cortex) in AD patients were retrieved from the NCBI Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo/). Details were
described in our previous paper [33] and the expression data collection and renormalized expression profiles can be accessed through our database http://www.alzdata.org [33]. Expression data of
AD mouse models were taken from the mouseac.org [34]. The number of amyloid-� (A�) plaques and the tau (Tau) burden were quantified and the correlation between mRNA expression levels
of genes of interest, and the quantified level of pathology was measured based on the processed data, using the Pearson correlation test. Significant p-values (<0.05) were marked in bold. One
(MIR759) out of the 31 genes was not available.

http://www.ncbi.nlm.nih.gov/geo/
http://www.alzdata.org
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Fig. 2. Protein-protein interaction network of MDD risk genes and AD core genes. Protein-protein interaction (PPI) network was constructed
using online tool STRING (https://string-db.org/). AD GWAS genes from the IGAP list [19] and reported causal genes as reviewed by
Guerreiro et al. [35], were defined as core AD genes. PPI interactions were defined using resources from text-mining, experiments, databases,
co-expression, and co-occurrence, as the default setting by the software. Line thickness indicates the strength of confidence. MDD risk genes
were marked by red circle.

Protein-protein interaction of MDD genes with
core AD genes

The AD GWAS genes from the IGAP study [19]
and reported causal genes, as reviewed by Guerreiro
et al. [35], were defined as core AD genes. The 31
MDD risk genes and the 43 core AD genes formed
a network with significantly more interactions than
expected (PPI enrichment p = 2.0 × 10−13) (Fig. 2).
In total, 13 genes (PAX5, CTNNA3, KIAA0020,
RSRC1, NEGR1, SIRT1, HACE1, HERC4, PAX6,
RERE, MEIS2, SUGT1 and MEF2C), including the
two genetically risk genes SUGT1 and MEF2C,
were integrated into the AD network, suggesting
an involvement of these genes in AD pathology
(Fig. 2). In particular, the SIRT1 gene interacted
with MAPT, ADAM10, and MEF2C, whereas HACE1
and PAX6 interacted with EPHA1 and GSK3B and
were linked with RERE, MEIS2, and HERC4. The
PAX5 interacted with the most recently recognized
AD gene SPI1 [38] (Fig. 2). Notably, eight (MEF2C,
HACE1, KIAA0020, NEGR1, PAX6, RERE, RSRC1,
and SIRT1) of the 13 genes recognized from the PPI
network were differentially expressed in AD brain

(Table 3), suggesting functional roles of these genes
in AD pathology.

Cross-validated targets using the CFG approach

Though we observed an apparent involvement of
several MDD risk genes in AD at different levels,
targets cross-validated by convergent lines of evi-
dence might be more reliable. In our CFG analysis
(Supplementary Table 3), we observed four genes
(HACE1, MEF2C, NEGR1, and SLC6A15) being
weighted with a score of 3, and 13 genes (CTNNA3,
DNAJC12, FAM53B, HERC4, KIAA0020, L3MBTL2,
LHPP, MEIS2, OAT, PAX6, SIRT1, SORCS3, and
SUGT1) with a score of 2. These 17 genes were
cross-validated by at least two independent lines of
evidence, further supporting their active involvement
in AD.

DISCUSSION

People with AD usually experience both cogni-
tive and psychiatric symptoms [3, 4, 8]. Behavioral
or psychiatric symptoms were thought to be more
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challenging effects of the disease [3, 11, 13, 39].
Understanding the relationship and cause of psychi-
atric symptoms in AD might be essential to improve
the quality of life for people suffered. Depression,
with high lifetime prevalence, is a common condi-
tion in older age. It has been recognized to be one of
the most frequent psychiatric comorbidities in AD [3,
8, 40]. It is yet unclear whether depression in AD is
causal or just a byproduct. Previous studies indicated
that depression may be a prodromal feature and pre-
dict risk of AD [7, 11–13, 39, 40]. Therefore, genetic
factors contributing to depression might affect risk to
AD onset and development. We tested the hypothesis
that MDD risk alleles might also contribute to AD
risk in this study.

In fact, a previous study by Gibson et al. [41]
assessed the genetic correlation of the MDD GWAS
findings with neurodegenerative disease using link-
age disequilibrium score regression. They observed
no overlapping polygenic architecture between life-
time MDD and AD at the whole-genome level and
suggested that the genetic overlap might be restricted
to some specific genes [41]. Our previous findings
showed that the MDD-risk allele CFH p.Y402H
conferred AD risk [16, 17]. The MEF2C gene was
identified as a risk gene of MDD by the most reli-
able MDD GWAS [18]; this gene was a previously
established AD-risk gene [19, 35]. It is thus valuable
to check systematically whether the top MDD risk
loci were involved in AD. Taking advantage of the
MDD risk gene list from two recently MDD GWAS
[18, 23] with a large sample size, we analyzed these
MDD GWAS hits in AD at the genomic variation,
mRNA expression and PPI levels, to further explore
the genetic correlation between depression and AD.

We initially checked whether the MDD GWAS
SNPs were associated with AD using publicly avail-
able GWAS data [19]. Among the 19 MDD GWAS
hits, only one SNP (L3MBTL2 rs2179744) within the
genic region showed a positive association with AD;
whereas 21 out of the 31 genes had nominally signif-
icant non-GWAS hit SNPs. Note that an intergenic
MDD GWAS SNP rs4543289 also showed a positive
association with AD, and further studies are needed to
identify the underlying genes. Three genes (SUGT1,
L3MBTL2, and MEF2C) were significantly associ-
ated with AD at the gene-based level. MEF2C was
a recognized AD risk gene [19, 35] and was highly
expressed in brain tissues according to the search at
http://www.alzdata.org [33]. It is a transcription fac-
tor that functions in immune response and regulates
synapse numbers and function [42]; both biological

processes would contribute to the course of MDD and
AD. The L3MBTL2 gene showed robust evidence for
genetic association with AD in both common and rare
variant analyses. Intriguingly, a recent large genome-
wide analyses for personality traits also identified
an association between L3MBTL2 SNPs and neu-
roticism [43]. The Schizophrenia Working Group
of the PGC also identified association of L3MBTL2
SNPs with schizophrenia in the largest GWAS of
schizophrenia [44]. These observations strongly sug-
gested that L3MBTL2 might be a genetic risk factor
common for neuropsychiatric disorders via its func-
tions in neural development. However, data from
the International Mouse Phenotyping Consortium
(IMPC, http://www.mousephenotype.org/) showed
that mice knocking out L3MBTL2 have decreased
lumbar vertebrae number and increased sacral verte-
brae number, but no abnormal behavior/neurological
or nerve system phenotypes. Though it is highly
expressed in neuron (cf. single cell expression data at
our AlzData.org database [33]), its function in neural
system remained unclear. Further functional assay is
needed to characterize the underlying mechanism of
L3MBTL2 in neuropsychiatric disorders.

We found that the SUGT1 gene was involved
in the AD network and was genetically associated
with AD. Previous report has shown that SUGT1 is
highly expressed in temporal cortex and significantly
decreased in the temporal, angular, and posterior cin-
gulate cortex in AD brains as compared to aged
controls [45]. Its decrease might be a result of neuron
degeneration in AD, yet it is still unclear how it con-
tributes to MDD and AD. Collectively, our results
showed that SUGT1 and L3MBTL2, together with
previously identified CFH [16, 17] and MEF2C [18,
19], might play a role in the neural system and serve
as reliable common targets in MDD and AD.

Though only limited number of the MDD
risk genes was found to be associated with AD
genetic risk, 18 MDD risk genes were differentially
expressed in AD brain tissues. In particularly, five
genes (MEF2C, SORCS3, OAT, DNAJC12, and
SIRT1) were consistently altered in all four brain
regions of patients according to the AlzData [33].
What’s more, mRNA expression levels of SORCS3
and OAT were also significantly correlated with
pathology burden in hippocampus of AD mice.
These two genes might be highly involved in AD
pathology. The OAT gene encodes the mitochondrial
enzyme ornithine aminotransferase, which is a key
enzyme in the synthesis of major excitatory and
inhibitory neurotransmitters glutamate and GABA

http://www.alzdata.org
http://www.mousephenotype.org/
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[46]. Its activities in brains of Huntington’s disease
were found to be reduced compared to age-matched
control brains [46]. However, no such changes were
observed in AD or schizophrenia [46]. Though there
was no doubt that OAT plays an essential role in
neuron function, its involvement in MDD and AD
needs further investigation. SORCS3 belongs to
the sorting and signaling receptor family central in
control of neuronal viability and function [47]. It is
highly expressed in hippocampus and localizes to the
postsynaptic density [47]. SORCS3-deficient mice
(http://www.informatics.jax.org/marker/phenotypes/
MGI:1913923) had deficits in behavioral activities
and spatial learning [47]. Intriguingly, a previous
study reported that SNPs of SORCS1, a family
member of SORCS3, were associated with AD sus-
ceptibility [48]. Overexpression of SORCS1 reduced
�-secretase activity and A� level, while suppression
of SORCS1 increased �-secretase processing of
A�PP and the level of A� [48]. Consistently,
another important sorting related receptor SORL1
was an established AD top risk gene [19]. These
observations suggested that SORCS3, together with
other sorting related receptors, might be involved in
both MDD and AD.

Besides the genomic and transcriptomic evidence,
several MDD risk genes and AD core genes formed a
network with high interactions than expected. Eight
genes (MEF2C, HACE1, KIAA0020, NEGR1, PAX6,
RERE, RSRC1, and SIRT1) in the PPI network were
differentially expressed in AD brain (Fig. 2), sug-
gesting potentially functional involvement of these
genes in AD pathology. The genetically risk gene
SUGT1 was also integrated into the AD network.
Notably, the key MDD gene SIRT1 [23] interacted
with AD core genes MAPT and ADAM10. In addi-
tion, though no single gene showed convergent lines
of supporting evidence, our CFG analysis found that
four genes (HACE1, MEF2C, NEGR1, and SLC6A15)
(Supplementary Table 3) were cross-validated by
data at different levels, including the well-known hit
MEF2C. The other three genes (HACE1, NEGR1, and
SLC6A15) were all highly expressed in neural sys-
tem and might be core genes shared between MDD
and AD.

By focusing on MDD risk genes locating in the sus-
ceptibility loci identified by GWAS, we found that:
1) two genes (SUGT1and L3MBTL2) showing nomi-
nally significant associations with AD; 2) SORCS3
and OAT were significantly correlated with AD
pathology in both human AD brain tissues and AD
mouse models; and 3) three new targets HACE1,

NEGR1, and SLC6A15 showing convergent lines of
evidence to be involved in AD. However, there were
several limitations in this study. First, the distilling
of causal MDD risk genes is very challenging and
the current list of candidate genes is incomplete. Due
to the huge heterogeneity of depression, it is diffi-
cult to map the most reliable risk genes as shown
by most of previous MDD GWASs [20–22]. Age at
onset of depression was suggested to be bimodal at
around 20 years old and 70–80 years old [49]. It is
reasonable to speculate that there might be different
genetic bases for early-life and late-life depressions.
Genetic correlation between AD and depression
might be dependent on the onset age of depres-
sion, as AD mainly occurred in the elderly. However,
there were some observations suggesting potentially
similar biological processes underlying early-onset
and late-onset depressions: 1) most of the MDD-risk
genes shared by AD showed a stable expression level
in prefrontal cortex from early adulthood (20 years
old) to late-life (80 years old) (Supplementary Fig-
ure 1); 2) both early-life [10] and late-life depression
[50] were indicated to increase risk of dementia. As
the MDD-risk genes from the 23andMe-based GWAS
meta-analysis were identified in subjects of all age
groups [18], whereas the CONVERGE findings were
based on subjects younger than 60 years old [23], the
current MDD risk gene list might not be specific to
early-onset and/or late-onset depressions, and refined
MDD gene list are needed to understand the shared
genetic basis between late-onset depression and AD.
Second, the sample size to identify rare coding vari-
ants in these MDD risk genes was relatively small,
and more samples will offer enhanced statistical
power. Third, there was no well-designed functional
assay to characterize these genes in the context of
AD and depression in this study. In addition, con-
sidering the polygenic nature of depression [18, 23],
it will be promising to test the correlation between
polygenic risk score of MDD with depression and
cognitive symptoms in AD patients in the future.

In short, our results were generally consistent with
the report by Gibson et al. [41] that the comorbid-
ity of MDD and AD might not be largely driven
by genetic factors. However, our data showed that
some MDD risk genes located in the GWAS regions
might be involved in AD pathogenesis. It is cur-
rently unclear whether depression is a consequence
of cognitive decline and neuronal loss affected by
AD, or depression at early adulthood contributes
to neuronal damage that leads to cognitive decline.
Considering the report that APOE �4, the major AD

http://www.informatics.jax.org/marker/phenotypes/MGI:1913923
http://www.informatics.jax.org/marker/phenotypes/MGI:1913923
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risk allele [19], has no contribution to depression
[51], it is more possible that depression might be
the upstream of AD or a byproduct event. Further
research is needed to understand other non-genetic
causes (e.g., common environmental factors) and
underlying biological mechanisms that account for
the complex relationship between neuropsychiatric
disorders. This knowledge might help to reduce the
psychiatric burden that AD patients and their care-
givers suffered.
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Supplementary Table 1. Candidate genes in the MDD-associated GWAS loci and their potential 

association with AD based on the IGAP data 

 

rs ID Genes in the GWAS loci 
MDD-GWAS 

p-value 

AD-GWAS 

p-value 

rs10514299 TMEM161B, MEF2C  9.99×10
−16

 0.8776 

rs1518395 VRK2  4.32×10
−12

 0.9664 

rs2179744 L3MBTL2 6.03×10
−11

 0.0004 

rs11209948 NEGR1 8.38×10
−11

 0.2800 

rs454214 TMEM161B, MEF2C  1.09×10
−9

 0.0213 

rs301806 RERE 1.90×10
−9

 0.3574 

rs1475120 HACE1, LIN28B  4.17×10
−9

 0.2659 

rs10786831 SORCS3  8.11×10
−9

 0.2988 

rs12552 OLFM4, SUGT1, MIR759 8.16×10
−9

 0.0777 

rs6476606 PAX5 1.20×10
−8

 0.9275 

rs8025231 MEIS2, TMCO5A, PAX6, PAX5  1.23×10
−8

 0.8981 

rs12065553 / 1.32×10
−8

 0.2481 

rs1656369 RSRC1, MLF1  1.34×10
−8

 0.9078 

rs4543289 / 1.36×10
−8

 0.0039 

rs2125716 SLC6A15  3.05×10
−8

 0.9882 

rs2422321 NEGR1 3.18×10
−8

 0.8054 

rs7044150 KIAA0020, RFX3  4.31×10
−8

 0.2996 

rs12415800 OAT, LHPP, FAM53B, METTL10, FAM175B 2.37×10
-10

 / 

rs35936514 CTNNA3, DNAJC12, SIRT1, HERC4, MYPN 6.43×10
-12

 0.8101 

Note: GWAS results for MDD were retrieved from the 23andMe-based MDD GWAS [1] and the 

CONVERGE study [2]. GWAS results for AD were retrieved from summary statistics of the International 

Genomics of Alzheimer’s Project (IGAP) [3]. Significant p-values (<0.05) were marked in bold. 

 

  



Supplementary Table 2. Rare coding variants in MDD risk genes in 107 Chinese patients with 

AD. 

 

Gene Position SNP Allele Mutation AC/AN p-value OR 

       
 

AD CN 
  

VRK2 chr2:58386773 rs192754138 G/A p.R468H 1/214 1/576 0.469 2.700 

 
chr2:58373581 rs369008157 T/C p.I385T 2/214 1/526 0.202 4.953 

 
chr2:58316786 rs35966666 A/G p.I157M# 2/214 6/736 1.000 1.148 

L3MBTL2 chr22:41601385 rs3804097 A/G p.I7V 10/212 12/736 0.016 2.987 

 
chr22:41605809 rs150194965 G/C p.S45T# 3/212 7/736 0.702 1.495 

 
chr22:41620735 rs151151722 G/A p.R394Q# 2/212 0/160 0.508 3.812 

 
chr22:41615519 . G/A p.A233T# 2/212 0/160 0.508 3.812 

 
chr22:41616786 . A/G p.H256R# 1/212 0/160 1.000 2.277 

 
chr22:41617247 rs2277846 C/T p.R300W# 3/212 4/736 0.190 2.627 

NEGR1 chr1:72076799 . C/A p.G233V# 1/212 0/160 1.000 2.277 

RERE chr1:8415639 . G/T p.L1503M# 3/140 1/136 0.622 2.956 

 
chr1:8418541 rs200525338 C/T p.A1352T# 1/212 5/526 0.679 0.494 

 
chr1:8418655 . T/G p.I1314L# 1/212 0/160 1.000 2.277 

 
chr1:8422837 rs200477297 T/C p.N603S# 1/214 4/526 1.000 0.613 

 
chr1:8418898 . C/T p.E1233K# 1/210 0/160 1.000 2.298 

SORCS3 chr10:106401650 . G/T p.A189S# 1/206 1/320 1.000 1.556 

 
chr10:106401666 . C/T p.S194L# 1/208 0/160 1.000 2.320 

 
chr10:107023094 rs146780166 G/A p.E1211K# 1/212 0/366 0.367 5.199 

 
chr10:107016619 . T/C p.M1127T# 1/212 0/160 1.000 2.277 

 
chr10:106899177 . G/A p.S412N# 1/212 0/160 1.000 2.277 

 
chr10:107005317 . C/G p.D962E 1/212 0/160 1.000 2.277 

OLFM4 chr13:53624380 rs77938256 A/C p.N336T# 1/212 5/736 1.000 0.693 

 
chr13:53624425 . T/A p.V351D# 1/212 0/160 1.000 2.277 

PAX5 chr9:37034023 rs139701864 A/T p.D2E# 4/206 7/736 0.269 2.062 

 
chr9:36882052 rs543302698 G/A p.P321#S 1/212 0/160 1.000 2.277 

TMCO5A chr15:38230419 . G/C p.E126#Q 1/212 0/160 1.000 2.277 

 
chr15:38233869 rs2937991 T/C spliceSite 212/212 736/736 1.000 0.289 

RSRC1 chr3:157840012 . G/A p.G40E 1/214 0/160 1.000 2.255 

 
chr3:157839961 . G/A p.R23Q# 1/214 0/160 1.000 2.255 

MLF1 chr3:158320674 . C/A p.T191N 1/212 0/160 1.000 2.277 

 
chr3:158320598 rs201104179 G/A p.D166N# 1/214 0/366 0.369 5.150 

SLC6A15 chr12:85266484 rs12424429 G/A p.A400V# 4/212 13/736 1.000 1.070 

 
chr12:85277540 rs139320132 T/C p.H285R 2/210 1/366 0.302 3.510 

 
chr12:85277727 . C/T p.G223S# 1/212 0/160 1.000 2.277 

 
chr12:85257227 rs3782369 A/C p.I603M# 3/212 0/366 0.049 12.246 

KIAA0020 chr9:2811557 rs2270889 C/T p.R480Q# 1/212 4/526 1.000 0.618 



 
chr9:2827077 . C/G p.R344T# 1/212 0/160 1.000 2.277 

 
chr9:2812238 . C/A p.G465V# 1/212 1/320 1.000 1.512 

 
chr9:2828745 rs201465798 C/G p.E296Q# 1/212 1/576 0.466 2.725 

 
chr9:2810343 . C/T spliceSite 1/212 0/160 1.000 2.277 

 
chr9:2838470 rs10968457 C/T p.S13N 9/212 33/736 1.000 0.944 

RFX3 chr9:3225130 . A/G p.L721P# 1/212 1/320 1.000 1.512 

 
chr9:3271018 rs41314211 G/A p.T396I# 1/212 0/160 1.000 2.277 

OAT chr10:126089508 . T/C p.I354V 1/212 0/160 1.000 2.277 

 
chr10:126097420 rs199957428 A/G p.V105A# 1/212 2/576 1.000 1.360 

LHPP chr10:126150523 rs75426652 C/A p.T31K 2/200 8/718 1.000 0.896 

 
chr10:126172794 . T/C p.L71P# 1/212 0/160 1.000 2.277 

 
chr10:126176996 . C/T p.R107#C 1/212 0/160 1.000 2.277 

 
chr10:126177053 rs200710743 G/A p.A126T# 1/212 0/160 1.000 2.277 

FAM53B chr10:126370915 . C/G p.C56S# 1/212 0/160 1.000 2.277 

 
chr10:126395213 rs200550066 G/A p.R24C 2/210 5/736 0.655 1.406 

METTL10 chr10:126463309 . G/A p.P112S# 1/212 0/160 1.000 2.277 

 
chr10:126477664 . T/C p.D80G# 1/212 0/160 1.000 2.277 

FAM175B chr10:126523250 . T/G p.L320V 1/212 0/160 1.000 2.277 

CTNNA3 chr10:67680239 . A/G p.V846A# 1/212 0/160 1.000 2.277 

 
chr10:68040262 rs190239785 A/G p.I617T# 1/212 4/736 1.000 0.867 

DNAJC12 chr10:69571259 rs201856212 G/A p.T107M 1/212 1/576 0.466 2.725 

 
chr10:69571365 rs569240271 G/A p.R72* 1/212 0/160 1.000 2.277 

SIRT1 chr10:69676240 rs114182972 G/A p.A712T# 1/212 2/366 1.000 0.863 

 
chr10:69651268 . G/A p.E300K# 1/212 0/160 1.000 2.277 

HERC4 chr10:69699400 . T/C p.Q847R# 1/212 0/160 1.000 2.277 

 
chr10:69682825 rs202149588 C/T p.G1013R# 1/212 0/366 0.367 5.199 

 
chr10:69793910 . T/C p.Y166C# 1/212 0/160 1.000 2.277 

MYPN chr10:69957212 rs372824930 C/T p.R1088C# 1/212 0/160 1.000 2.277 

 
chr10:69933986 . C/T p.P713S 1/212 0/160 1.000 2.277 

 
chr10:69908157 rs11596653 T/C p.V393A 1/212 1/320 1.000 1.512 

 
chr10:69881590 rs201203517 C/T p.P132L 1/212 2/736 0.532 1.739 

 
chr10:69934278 . G/A p.R810H 2/212 4/320 1.000 0.752 

 
chr10:69881606 . G/C p.R137S 1/212 0/160 1.000 2.277 

  chr10:69959320 rs138313730 C/A p.L1161I# 2/212 1/366 0.558 3.476 

Note: Position was based on human genome reference assembly (build GRCh37/hg19); Allele, reference allele / 

alternative allele; AC, allele count; AN, allele number; OR, odds ratio; ExAC, Exome Aggregation Consortium 

(http://exac.broadinstitute.org/); AD, 107 subjects with Alzheimer’s disease; CN, 368 subjects combining 160 

in-house non-dementia individuals [4] and 208 Chinese from the 1000 Genome project [5]. The ANNOVAR was 

used to annotate variants, which were assigned into different functional categories according to their locations and 

expected effect on the encoded gene products [6]. 
# 
Coding variants predicted to be damaging according to 

ANNOVAR annotation. 



Supplementary Table 3. Convergent lines of evidence for the MDD GWAS genes 

 

Gene Common 

variant 

Coding 

variant 

Patient Mouse PPI CFG 

score 

HACE1 0 0 1 1 1 3 

MEF2C 1 0 1 0 1 3 

NEGR1 0 0 1 1 1 3 

SLC6A15 0 1 1 1 0 3 

CTNNA3 0 0 0 1 1 2 

DNAJC12 0 0 1 1 0 2 

FAM53B 0 0 1 1 0 2 

HERC4 0 0 0 1 1 2 

KIAA0020 0 1 0 0 1 2 

L3MBTL2 1 1 0 0 0 2 

LHPP 0 1 1 0 0 2 

MEIS2 0 0 0 1 1 2 

OAT 0 0 1 1 0 2 

PAX6 0 0 1 0 1 2 

SIRT1 0 0 1 0 1 2 

SORCS3 0 0 1 1 0 2 

SUGT1 1 0 0 0 1 2 

LIN28B 0 0 1 0 0 1 

MYPN 0 1 0 0 0 1 

OLFM4 0 0 1 0 0 1 

PAX5 0 0 0 0 1 1 

RERE 0 0 0 0 1 1 

RFX3 0 0 1 0 0 1 

RSRC1 0 0 0 0 1 1 

TMEM161B 0 1 0 0 0 1 

VRK2 0 0 0 1 0 1 

FAM175B 0 0 0 0 0 0 

METTL10 0 0 0 0 0 0 

MLF1 0 0 0 0 0 0 

TMCO5A 0 0 0 0 0 0 

Note: A gene was defined as AD-associated if it 1) showed a significant association with AD at 

the gene-based test using the IGAP data [3]; 2) had significantly AD-associated rare variants in 

107 Han Chinese patients; 3) was differentially expressed in any brain tissue of AD patients [7]; 

4) was correlated with AD pathology in AD mice [8]; 5) was involved in the PPI network as 

evaluated by the online tool STRING. For each line of evidence, one point was assigned as the 

convergent functional genomics (CFG) score if the above fact was observed; otherwise zero 

point. The higher CFG score, the stronger association with AD. 



 

Supplementary Fig. 1. Expression pattern of MDD-risk genes in the prefrontal cortex across human lifespan. 

Data retrieved from BrainCloud (http://braincloud.jhmi.edu/) [9], an online application for exploring the 

temporal dynamics of transcription in the human prefrontal cortex across the lifespan. Most of the MDD-risk 

genes MEF2C (A), SUGT1 (B), SORCS3 (C), HACE1 (D), NEGR1 (E), SLC6A15 (F), SIRT1 (G), and LHPP 

(H) showed a stable mRNA expression level in prefrontal cortex from early adulthood (20 years old) to 

late-life (80 years old). 
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