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Yu Fana,1, Rongcan Luoa,b,1, Ling-Yan Sua,b, Qun Xianga, Dandan Yua, Ling Xua,
Jia-Qi Chenc, Rui Bia, Dong-Dong Wud, Ping Zhengc,d,e,∗ and Yong-Gang Yaoa,b,c,f,∗
aKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences
and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
bKunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
cKunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology,
Chinese Academy of Sciences, Kunming, China
dState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese
Academy of Sciences, Kunming, China
eYunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy
of Sciences, Kunming, China
f Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences,
Shanghai, China

Accepted 10 October 2017

Abstract. Alzheimer’s disease (AD) is a neurodegenerative disease with increasing incidence across the world and no cure at
the present time. An ideal animal model would facilitate the understanding of the pathogenesis of AD and discovery of potential
therapeutic targets. The Chinese tree shrew (Tupaia belangeri chinensis) has a closer genetic affinity to primates relative
to rodents, and can attain ages of 8 years or older, which represents another advantage for the study of neurodegenerative
diseases such as AD compared to primates. Here, we analyzed 131 AD-related genes in the Chinese tree shrew brain tissues
based on protein sequence identity, positive selection, mRNA, and protein expression by comparing with those of human,
rhesus monkey, and mouse. In particular, we focused on the A� and neurofibrillary tangles formation pathways, which are
crucial to AD pathogenesis. The Chinese tree shrew had a generally higher sequence identity with human than that of mouse
versus human for the AD pathway genes. There was no apparent selection on the tree shrew lineage for the AD-related
genes. Moreover, expression pattern of the A� and neurofibrillary tangle formation pathway genes in tree shrew brain tissues
resembled that of human brain tissues, with a similar aging-dependent effect. Our results provided an essential genetic basis
for future AD research using the tree shrew as a viable model.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenera-
tive disease characterized by severe memory deficit
and neuronal loss in elderly people over 65 years
old [1]. The pathological features of AD are the
accumulation of amyloid-� (A�) plaques and neu-
rofibrillary tangles (NFTs), neuronal damage, and
cognitive impairment [1, 2]. According to the World
Alzheimer Report [3], 46.8 million people worldwide
were living with dementia in 2015. This number will
almost double every 20 years, reaching 74.7 million
in 2030 and 131.5 million in 2050 [3]. To care for
so many AD patients will be a huge burden for both
families and society [1–4].

The ideal animal model is crucial for understand-
ing the pathogenesis of AD, which is essential for
designing a potential therapeutic approach [5–7].
Currently, several animals have been used to develop
AD models. Among them, non-human primates were
considered to be the ideal model for AD because of
their similarities to human [8, 9]. Extensive investiga-
tion of primates including mouse lemurs and squirrel
monkeys among other primates might become
increasingly important models for the development
of novel treatments in this domain [10–17]. How-
ever, the non-human primate model has not been used
widely because of a high maintenance cost and the
long aging processes in primates to form AD pathol-
ogy [18, 19]. Transgenic mouse AD models have been
widely used to study new therapeutic targets of AD
[20, 21], but the problem with the mouse model is
that therapeutic strategies are rarely translatable to
AD patients [22]. Other animals, such as dog [23],
roundworm [24], fruit fly [25, 26], and zebrafish [27],
have also been used for AD studies. As the available
AD models have many limitations, there is a pressing
need to establish new experimental models of AD.

Chinese tree shrews (Tupaia belangeri chinen-
sis) are squirrel-like, rat-sized animals inhabiting the
tropical shrubs and forests of South and Southeast
Asia [28] and South China [29]. The tree shrew
has several characteristics and benefits as a good
experimental animal, including small adult body size,
easy and low-cost of maintenance, high brain-to-body
mass ratio, short reproductive cycle, and a close rela-
tionship to primates [7, 30–33], for studying human
diseases, such as Coxsackie virus A16 infection [34]
and other diseases [7, 32, 33, 35]. Previous studies
have shown that the tree shrew has an excellent learn-
ing ability [36–39]. There are several attempts to use
the tree shrew in the study of visual cortex function

[40, 41], brain development and aging [42], and
neuropsychiatric disorders, such as social stress and
depression [43, 44]. Moreover, Tupaia belangeri can
live up to 8 years or more, which represents another
advantage for the study of neurodegenerative diseases
compared to primates. The important pathological
feature, the deposition of A�, was reported in nat-
urally aged tree shrews [45, 46]. Recently, Lin et al.
[47] reported that they could induce cognitive impair-
ment associated with neuronal apoptosis in the tree
shrew by intracerebroventricular injection of A�1-40
into hippocampus. Based on these lines of evidence,
there is a possibility and feasibility to use the tree
shrew to replace rodents and primates in AD research.

In this study, we analyzed the AD pathway genes
of the Chinese tree shrew, with an intention to learn
more about the sequence identity between tree shrew
and human, as well as mRNA profiling and protein
expression in tree shrew brain tissues. Our results
illustrate the genetic basis for using the Chinese tree
shrew as a viable AD animal model.

MATERIALS AND METHODS

Experimental animals and tissue collection

The Chinese tree shrews were introduced from the
experimental animal core facility of the Kunming
Institute of Zoology (KIZ), Chinese Academy of Sci-
ences (CAS). After euthanasia by diethyl ether as
previously described [48], cerebral cortex and hip-
pocampus tissues of three groups of tree shrews with
different ages were quickly dissected, immediately
frozen in liquid nitrogen, and stored at –80◦C. These
tissues were used for quantification of the AD path-
way gene expression: group 1, juvenile Chinese tree
shrews (1–6 months old, n = 8); group 2, adult Chi-
nese tree shrews (3 years old, n = 8); and group 3,
old Chinese tree shrews (over 5 years old, n = 8).
The cerebral cortex, hippocampus, and full brain tis-
sues from two male juvenile Chinese tree shrews
(6 months old) were collected for mRNA expression
profiling. For immunofluorescence assay, two male
Chinese tree shrews (Juvenile, 6-month-old, n = 1;
Old, 6-year-old, n = 1) were deeply anesthetized with
sodium pentobarbital overdose (120 mg/kg), then
were intracardially perfused with saline and 4%
paraformaldehyde, following a previously described
procedure for rodents [49, 50]. The experimental pro-
tocol was approved by the Institutional Animal Care
and Use Committee of KIZ, CAS.
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Source of gene dataset and identification of the
orthologous genes

To determine the ortholog relationship between
the Chinese tree shrew and human, we down-
loaded human protein sequence data from Ensembl
(release 64; http://www.ensembl.org/index.html) and
the Chinese tree shrew genome dataset (http://
www.treeshrewdb.org) [51]. A total of 131 human
AD-related genes were retrieved from the KEGG
database [52] (map05010: Alzheimer’s disease) for
a comparative analysis, following the same approach
described in our previous study of the tree shrew loco-
motion system [53]. In brief, the longest transcript
was chosen to represent each gene with alterna-
tive splicing variants. We aligned the corresponding
human orthologous protein sequences of these genes
onto the Chinese tree shrew genomes by tblastn
[54]. The best hit regions of each gene with 5 kb
flanking sequence were cut down and re-aligned
using GeneWise [55]. We identified the ortholog
relationship among other species through a two-step
method: First, we obtained the ortholog relation-
ship from Ensembl one2one orthologous gene list
using human gene as the reference and downloaded
coding region nucleotide sequences and protein
sequences according to IDs from Ensembl (release
64; http://www.ensembl.org/index.html). Second, we
identified the sequences of these genes not included
in Ensembl one2one orthologous gene list by using
the methods for computational gene prediction, as
described in processing the Chinese tree shrew
genome [30]. The sequence analysis of the Chinese
tree shrew genome was performed at the High Perfor-
mance Computing Platform, Large-scale Instrument
Regional Center of Biodiversity of KIZ.

Phylogenetic analysis

To infer the phylogenetic position of the Chi-
nese tree shrew based on the A�PP, PSEN1,
PSEN2, ADAM10, and BACE1 protein sequences,
we retrieved protein sequences of 7 other species
(human, chimpanzee, rhesus monkey, mouse, rat,
dog, and cat) from Ensambl (Supplementary Table 1).
The protein sequences were aligned by Muscle 3.8
[56]. Maximum Likelihood (ML) trees were recon-
structed based on protein sequence with the JTT as
the amino acid substitution mode by using MEGA
6.0 [57]. Accuracies and statistical test of the phylo-
genetic tree were measured by bootstrap method with
1000 replications.

Detection of the positively selected genes

All coding sequences (CDS) from 6 species
(human, rhesus monkey, Chinese tree shrew, mouse,
rat, and dog) were aligned by MUSCLE 3.8 [56] with
the guidance of aligned protein sequences. To reduce
the rate of false positive prediction, we further carried
out a series of filtering processes: First, we deleted all
gaps and “N” from the alignments. Next, the aligned
regions with more than 4 non-synonymous variants in
7 continuous residues were filtered. After deletion, if
the remaining alignment was shorter than 33 residues,
then the entire alignment was discarded.

To detect potential candidate genes under posi-
tive selection along the Chinese tree shrew lineage,
the CODEML program from PAML4 package [58],
which is a maximum-likelihood method of molecu-
lar evolution, was applied to the ortholog gene set
of the 6 species. We used the same guide tree pre-
sented in our previous study [30]. First, we used
a free-ratio model, which assumes an independent
ratio (ω) of nonsynonymous (Ka) to synonymous
(Ks) substitutions rate (ω = Ka/Ks) for each branch,
to provide a rough measure of the selective pressure
on each branch. Subsequently, we used branch-site
model (test 2 of branch-site model) with the fixed
foreground branch ω2 = 1 or non-fixed foreground
branch ω2, to determine whether the gene has under-
gone positive selection on a foreground branch [59].
Likelihood ratio test (LRT) was performed to test
whether a proportion of sites in the sequence had
a statistically significant support for ω > 1 on the
foreground branch.

mRNA profiling and protein expression analysis

We used RNA sequencing (RNA-seq) to determine
mRNA expression profiling of the cerebral cortex,
hippocampus, and full brain tissues from two male
juvenile Chinese tree shrews. The RNA-seq (500 bp
library, 150 bp reads) was performed at the Novo-
gene Corporation (Beijing) by using the Illumina
HiSeq X Ten Platform. The raw sequencing data
could be downloaded from the tree shrew Database
(http://www.treeshrewdb.org) [51]. In addition, we
retrieved the RNA-seq raw reads of brain tissues of
human (GSE58604 [60] and GSE30352 [61]), mouse
(GSE30352 [61]), rhesus monkey (GSE30352 [61]
and data reported by Ye et al. [62]), and the Chinese
tree shrew (GSE39150 [30]) from Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
and our previous studies [30, 62]. All the sample

http://www.ensembl.org/index.html
http://www.treeshrewdb.org
http://www.treeshrewdb.org
http://www.ensembl.org/index.html
http://www.treeshrewdb.org
http://www.ncbi.nlm.nih.gov/geo/
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information was listed in Supplementary Table 2. The
raw RNA-seq data were trimmed to remove sequenc-
ing adapters and reads containing one or more
Ns > 5%, or of low quality. We then aligned these
filtered reads to the reference genome sequences
using TopHat 1.4.1 [63]. We calculated the FPKM
(fragments per kilobase per million mapped reads)
values by using the Cufflinks software [64] to quan-
tify gene expression level. The heatmap analysis
of mRNA expression patterns in different species
and tissues was performed on the basis of the
FPKM values. The principal-component analysis of
gene expression levels was performed using the
‘prcomp’ function in the ‘stats’ package in R program
(http://www.R-project.org/). We also calculated the
Pearson’s correlation coefficient matrices using the
FPKM values and performed the hierarchical cluster
analysis using R.

For quantification of protein expression, cor-
tex and hippocampus tissues of the Chinese tree
shrews were prepared using protein lysis buffer (Bey-
otime Institute of Biotechnology, P0013). Protein
concentration was determined by using the BCA
protein assay kit (Beyotime Institute of Biotechnol-
ogy, P0012). Bovine serum albumin (BSA; Beyotime
Institute of Biotechnology, P0007) was used as a
protein standard. Tissue lysates (25 �g total pro-
tein/sample) were separated by electrophoresis on
12% sodium dodecyl sulfate polyacrylamide gel
and transferred to polyvinylidene fluoride (PVDF)
membranes (Roche Diagnostics, IPVH00010) using
the standard procedure, as described in our pre-
vious studies [65, 66]. After blocking with 5%
nonfat dry milk in TBS containing 0.1% Tween 20
(TBST) for 2 h at room temperature, membranes were
incubated with primary antibody against BACE1
(1 : 1000; Cell Signaling Technology, 5606p), GSK-
3�/� (1 : 1000; Cell Signaling Technology, 5676p),
Tau (1 : 1000; Cell Signaling Technology, 4019),
P-Tau-181 (1 : 1000; Signalwayantibody, 11107),
Neurofilament-L (1 : 1000; Cell Signaling Tech-
nology, 2837), total A� (1 : 1000; Cell Signaling
Technology, 8243S), A�42 (1 : 1000; Cell Signaling
Technology, 14974), GAPDH (1 : 10000; Protein-
tech, 60004-1-Ig), and �-actin (1 : 10000; Thermo,
1 : 10000), respectively, overnight at 4◦C. The mem-
branes were washed 3 times with Tris-buffered saline
(Cell Signaling Technology, 9997) with Tween 20
(0.1%; Sigma, P1379), each time for 5 min, fol-
lowed by incubation with the peroxidase-conjugated
anti-mouse (lot number 474–1806) or anti-rabbit
(474–1516) IgG (1 : 5000; KPL) (depends on the

primary antibody) for 1 h at room temperature. The
epitope was visualized using an ECL western blot
detection kit (Millipore, WBKLS0500). Image J
(National Institutes of Health, Bethesda, Maryland,
USA) was used to evaluate the densitometry.

Immunofluorescence and confocal microscopy
imaging

For immunofluorescence assay, the tree shrew
cortex tissue was sectioned coronally at 10 �m thick-
ness on a cryostat (Leica, CM1850UV-1-1, Amtzell,
Germany). Sections were collected on slides and
were incubated for 16 h with the primary anti-mouse
glial fibrillary acidic protein (GFAP) (1 : 200; Merck
Millipore, MAB360), anti-mouse neurofilament-H
(1 : 200; Cell Signaling Technology, #2836), and
anti-rabbit total A� (1 : 200; Cell Signaling Tech-
nology, 8243S), respectively. After 3 washes with
PBST (phosphate-buffered saline [Beyotime Insti-
tute of Biotechnology, C0221A] containing Triton
X-100 [0.1%; Sigma-Aldrich, 10789704001]), each
for 5 min, sections were then incubated with a
FITC-conjugated anti-mouse IgG (1 : 500; Invit-
rogen, A21202) or anti-rabbit IgG (1 : 500; Life
Technologies, A21207) secondary antibody, and
nuclei were counterstained with DAPI. The slides
were visualized under an Olympus FluoView™ 1000
confocal microscope (Olympus, America).

RESULTS

Evolutionary conservation analysis of the AD
pathway genes in the Chinese tree shrew

We identified the orthologs of all 131 AD-related
genes in the Chinese tree shrew based on the
gene list of the KEGG database [52] (map05010:
Alzheimer’s disease). The average protein sequence
identity between human and Chinese tree shrew was
88.29%, higher than that of between human and
mouse (85.11%) (Fig. 1A; Supplementary Table 3).
In particular, mouse only had 52 genes with a high
sequence identity (proportion of identical residues in
the protein > 90%), while the Chinese tree shrew had
68 such genes. These results suggested the Chinese
tree shrew had a higher protein sequence identity rel-
ative to human for the AD related genes compared
with that of mouse versus human.

To compare the substitution rates between the
Chinese tree shrew lineage and mouse lineage, we
used a one-ratio model (M0) to calculate the ratio

http://www.R-project.org/
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Fig. 1. Overall protein sequence identity and Ka/Ks distribution of one-to-one orthologs between human and tree shrew and between human
and mouse for the AD pathway genes. A) Protein sequence identity of one-to-one orthologs between human and tree shrew, between human
and mouse and between tree shrew and mouse. B) Ka/Ks distribution of one-to-one orthologs between human and tree shrew. C) Ka/Ks
distribution of one-to-one orthologs between human and mouse.

of nonsynonymous to synonymous substitution rates
(Ka/Ks) on each branch of the species tree [30]
using the PAML package [58]. A relatively lower
level of variability in substitution rates was observed
in the Chinese tree shrew lineage (average Ka/Ks
was 0.1074) than in mouse lineage (average Ka/Ks
was 0.1382) (Fig. 1B, C; Supplementary Table 4).
We also detected the difference of selective pressure
between the Chinese tree shrew and other species.
Each aligned gene was evaluated for their Ka/Ks
value (ω value) by using the codeml program in the
PAML package [58], under the guide tree described in
our previous study [30]. Then, improved test 2 of the
branch-site model was used to detect signals of pos-
itive selection on each alignment. However, we did
not identify any positively selected gene after adjust-
ing for multiple testing using the false discovery rate
(FDR) (Supplementary Table 4).

mRNA expression pattern of the AD-related genes

To study mRNA expression pattern of the AD path-
way genes in the Chinese tree shrew, we calculated
the FPKM values by using RNA-seq data of brain
tissues. A total of 129 genes had an expression in
brain tissues of the Chinese tree shrew (Supplemen-
tary Table 5); note that the other two AD pathway
genes CACNA1C and TNF were not expressed in tree
shrew brain tissues, and TNF was also not expressed
in human and mouse brain tissues. We performed
a two-dimensional hierarchical clustering to group
the 129 genes in brain tissues of human, rhesus
monkey, Chinese tree shrew, and mouse according

to their Euclidean distances [67] (Fig. 2A). These
genes could be classified into several expression
clusters based on the similarity of their expression
patterns. We observed a more similar expression pat-
tern between the Chinese tree shrew and human than
between mouse and human.

To better understand the variation of gene expres-
sion across brain tissues of the Chinese tree shrew,
rhesus monkey, human, and mouse, we performed
principal component analyses and hierarchical clus-
tering based on log2 transformed FPKM values for
the 129 genes in 23 RNA-seq samples (Supplemen-
tary Table 5). Similar gene expression patterns were
clearly discerned when differentiation among sam-
ples was visualized in a reduced-dimension space
via the first two principal components (Fig. 2B).
Together, the first principal component (PC1) and
the second principal component (PC2) could explain
more than 87% of the total variance of this dataset.
The overall distribution of the Chinese tree shrew
samples was similar to that of human samples. The
resulting cluster map based on the Pearson’s correla-
tion coefficients clearly displayed the differentiation
of expression patterns in human, rhesus monkey, Chi-
nese tree shrew, and mouse brain tissues: Chinese
tree shrew had an expression pattern closer to human
than to mouse (Fig. 2C). Collectively, these anal-
yses displayed gene expression differences of the
AD pathway genes among human, rhesus monkey,
Chinese tree shrew, and mouse brain tissues, and sug-
gested that the Chinese tree shrew had a more similar
expression pattern to human than mouse to human.
Note that the clustering pattern of species based on
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Fig. 2. mRNA expression patterns of the AD pathway genes in brain tissues of human, rhesus monkey, tree shrew and mouse. A) A heatmap
of mRNA expression levels for 129 genes from brain tissues of human (n = 7), rhesus monkey (n = 4), tree shrew (n = 7), and mouse (n = 5)
based on the RNA-seq data from published sources (GSE58604 [60], GSE39150 [30], and GSE30352 [61]) and the study by Ye et al. [62].
B) Principal component analysis (PCA) and (C) hierarchical cluster analysis of mRNA expression in brain tissues of human, rhesus monkey,
tree shrew, and mouse. The numbers on the cluster map refer to the Pearson’s correlation coefficients based on the FPKM values. B, brain;
H, hippocampus; C, cortex; TS, tree shrew; rhesus, rhesus monkey. The reported human, mouse and rhesus monkey data were all from brain
and the original sample information was listed in Supplementary Table 2.

the overall gene expression in brain tissues showed a
similar pattern to that of 129 genes (Supplementary
Figure 1).

Molecular characterization of the Aβ formation
pathway

Abnormal accumulation of an aggregation-prone
42-residue A� (A�42) would lead to the formation
of A� plaques in brain, triggering the development
and pathogenesis of AD [2, 68]. A�42 is cleaved
from the protein amyloid-� protein precursor (A�PP)
sequentially by �-secretase (BACE1) and then by �-
secretase [4, 69]. The accumulation of A�42 may
be relatively rare in normal brain, and the A�PP

is cleaved first by �-secretase (ADAM10), rather
than by �-secretase, precluding A�42 production and
abnormal accumulation [1, 2, 4, 69]. We therefore
focused on the protein sequences of A�PP, BACE1,
PSEN1, PSEN2, and ADAM10 in human, Chinese
tree shrew, and mouse. These five proteins in the Chi-
nese tree shrew all showed a high sequence identity
with human and the average of variance was below
3%. Consistently with previous report [70], the A�42
peptide sequence of the Chinese tree shrew was com-
pletely identical with human, whereas mouse was not
(Fig. 3A). Note that the DNA sequences of the A�42
had some nucleotide differences between tree shrew
and human, and had a nucleotide sequence identity up
to 93%. We reconstructed a maximum-likelihood tree
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Fig. 3. Evolutionary analysis of genes in the A� formation pathways. A) Peptide sequence alignment of A�42 in 14 vertebrate species
(accession numbers in the Ensemble database were listed in Supplementary Table 6). B) Maximum likelihood trees based on the five-protein
combined data (A�PP, BACE1, PSEN1, PSEN2, and ADAM10) for the A� formation pathway. The number on the branch referred to
bootstrap value based on 1000 replications.

based on the combined protein sequences of A�PP,
BACE1, PSEN1, PSEN2, and ADAM10. The tree
showed that the Chinese tree shrew was clustered
with primates with a high bootstrap support (Fig. 3B),
which was consistent with the recognized species
tree [71].

We performed western blot for BACE1, total A�,
and A�42 in tree shrew brain tissues using human
antibodies. The significantly decreased expression
of BACE1 with aging was observed in tree shrew
cortex tissues and there was a similar tendency in
hippocampus tissues (Fig. 4A-D). Both immunoflu-
orescence staining (Fig. 5A, B) and western blot assay
(Fig. 5C) showed that total A� had an age-dependent
increase in the Chinese tree shrew cortex tissues.
Some astrocytes, as indicated by GFAP positive
structures, showed A�-immunoreactivity (Fig. 5A).
Double immunofluorescent staining revealed a co-
localization of total A� and neurofilament-H proteins
in neurons (Fig. 5B). However, protein level of A�42
was similar in brain tissues from the Chinese tree
shrews with different ages. These lines of evidence
suggested that the Chinese tree shrew had a similar
A�PP pathway with human at the protein sequence

identity and expression levels. It should be mentioned
that the increased total A� spots in the old tree shrew,
which seemed to be intracellular amyloid deposits
and had a diffuse or compact pattern (Fig. 5A, B),
did not show a typical feature as the amyloid plaques
in human AD brain tissues [72, 73]. Consistent with
an early study by Pawlik et al. [70], we were unable
to demonstrate the amyloid plaques in brain tissues
of old tree shrew by using the immunohistochemi-
cal analysis (data not shown). However, in previous
studies by Yamashita et al. [45, 46], they showed
the amyloid plaques in brains of naturally aged tree
shrews using the same technique.

Molecular characterization of the NFT formation
pathway

NFT is another important pathological feature
of AD. NFTs are mainly composed of abnor-
mally hyperphosphorylated tau (MAPT) proteins
[1, 74]. Abnormal distribution of neurofibrillary
(NF) proteins (including three subunits neurofilament
light [NEFL], neurofilament medium [NEFM], and
neurofilament heavy [NEFH]) were also involved
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Fig. 4. Protein expression levels of BACE1, GSK3�, GSK3�, Tau, Tau-P181, and neurofilament-L in the cortex and hippocampus tissues
from the Chinese tree shrews with different ages. A, B) Quantification of protein expression in the cortex tissues from the Chinese tree shrews
with different ages. C, D) Quantification of protein expression in the hippocampus tissues from the Chinese tree shrews with different ages
(each age group contains 8 individuals). ∗p < 0.05; ∗∗p < 0.01, Student’s t test.

in the formation of the NFTs. These proteins had
an increased expression level in human AD brains
[75, 76]. Glycogen synthase kinase 3 (GSK3, includ-
ing its two isoforms GSK3� and GSK3�) could
phosphorylate tau protein and promote A� produc-
tion [77]. We found that the key genes of the NFTs
formation pathway, including MAPT, NEFL, NEFM,
NEFH, GSK3A, and GSK3B, all showed a high pro-
tein sequence identity with human orthologs and the
average of identity was above 91%.

We detected the protein expression of tau (MAPT),
phosphorylated tau (Tau-P181), neurofilament-L
(NEFL), GSK3�, and GSK3� in the Chinese tree
shrew brain tissues by using human antibodies
(Fig. 4A-D). GSK3� and GSK3� showed a signif-
icantly decreased expression with aging in cortex
tissue (Fig. 4A, B). Tau-P181 had a significantly
age-dependent increased level in hippocampus tis-
sues (Fig. 4C, D) of the Chinese tree shrew. The
other proteins, including tau and NEFL, had a sim-
ilar level of expression in brain tissues from tree

shrews with different ages. Taken together, the Chi-
nese tree shrew shared a similarity with human in the
NFTs formation pathway. We did not perform typi-
cal immunohistochemical assay concerning NFTs to
show the presence or absence of tangles in the old
tree shrews. The underlying reason for the increased
level of phosphorylated tau in hippocampus tissues,
but not in cortex tissues of tree shrews during aging
(Fig. 4), awaits further study.

DISCUSSION

AD is a complicated neurodegenerative disease
[1], and an ideal animal model would accelerate
the research of this disease [5, 22]. At the present
time, transgenic mouse is the most extensively used
model, which had made a significant and valu-
able contribution for AD research [20, 21, 78].
Due to the species difference, therapeutic strate-
gies found in the transgenic mouse model of AD
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Fig. 5. Immunofluorescence staining and protein expression levels of total A� in brain tissues from the Chinese tree shrews with different
ages. Immunofluorescence staining of (A) total A�/GFAP and (B) total A�/neurofilament-H in cortex tissues from one juvenile (6-month-
old) and one old (6-year-old) Chinese tree shrew. C) Quantification of protein expression levels of total A� and A�42 in the brain tissues
from the Chinese tree shrews with different ages (each age group contains 3 individuals). ∗p < 0.05, Student’s t test.
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have not been successfully translated to AD patients
[22].

In this study, we aimed to test whether the Chinese
tree shrew, a close species to primates, has the poten-
tial as a model for future AD research. We were able
to find the following lines of evidence to show that the
tree shrew may be better for demonstrating the for-
mation of the two pathological hallmarks of AD than
rodents. First, we could identify all 131 AD-related
genes in the Chinese tree shrew. The overall protein
sequence identity of these genes between tree shrew
and human was higher than that of between mouse
and human. Second, the Chinese tree shrew lineage
had a smaller Ka/Ks value than the mouse lineage,
suggesting a higher conservation of the AD pathway
gene relative to the consensus of all six mammalian
species (including human) under study (Fig. 1). There
were no positively selected genes in the AD path-
way in tree shrew (Supplementary Table 4). Third,
comparison of the overall expression pattern of the
AD-related genes in brain tissues of human, mon-
key, Chinese tree shrew, and mouse showed that the
Chinese tree shrew had a high similarity to human,
resembled that of monkey. Finally, an in-depth anal-
ysis of the two AD pathological pathways that were
involved in the accumulation of A� plaques and
NFTs, showed a higher similarity in both protein
sequence identity and expression pattern between tree
shrew and human. In particular, the overall protein
expression of BACE1, GSK3�, and GSK3� had an
age-dependent decrease in the Chinese tree shrew
cortex tissues; Tau-P181 showed an increased trend in
hippocampus tissues. Moreover, the protein expres-
sion of total A� showed a significant increase in both
hippocampus and cortex tissues of old Chinese tree
shrews, which was consistent with those of human
[79] and rhesus monkey [80]. Immunofluorescence
analysis further confirmed that total A� had an age-
dependent accumulation in naturally aged Chinese
tree shrew cortex tissues, which was also reported
in previous studies [45, 46]. As we did not ana-
lyze the protein expression in human brain due to
inaccessibility of human samples, we checked the
age-dependent pattern for these key proteins reported
in previous studies [79, 81] and identified a similar
pattern as observed in Chinese tree shrew: Tau pro-
tein showed an age-dependent decrease in all brain
regions [81] and GSK3� was slightly downregulated
during aging in human hippocampus [79]; the expres-
sion of total A� was significantly upregulated in
human hippocampus [79]. Note that the BACE1 had
a significant aging-dependent decrease in tree shrew

cortex, which was different from that of human, in
which a relatively stable protein level with aging was
reported in human prefrontal cortex [82, 83]. The
overall similarity pattern of the AD pathway genes
in tree shrew with human was consistent with a pre-
vious neuropeptidomics study of the tree shrew brain
tissues by Petruzziello et al. [84], in which they iden-
tified a significantly higher degree of neuropeptide
homology to the equivalent sequences in humans
than those in rodents. Moreover, recent studies of dis-
tribution of neuropeptides [85, 86] and whole-brain
mapping of afferent projections to the bed nucleus of
the stria terminalis in tree shrew brain [87] also pro-
vided an anatomical basis for using tree shrew as a
good model for study neuropsychiatric diseases.

In short, the Chinese tree shrew had a higher
protein sequence identity and an overall similar
expression pattern of the AD-pathway genes with
human compared to mouse versus human. This would
suggest that the Chinese tree shrew has the poten-
tial to be a viable model for AD study, at least
it appeared to be better than the extensively used
mouse model of AD [20, 21]. Given the recent
advance of genetic manipulation techniques, e.g., the
cutting-edge CRISPR/Cas9 technique [88–92] and
the establishment of the first transgenic tree shrew
using the spermatogonial stem cells [93], we believe
that there is a high chance of successfully creat-
ing a valid tree shrew AD model for exemplifying
the key AD pathological features. Currently, we are
attempting to create a transgenic tree shrew by over-
expressing human AD-causing A�PP and PSEN1
mutants in tree shrew brain. With the successful cre-
ation of this AD transgenic tree shrew, we could
detect whether the misfolded A� or tau, or post-
translational modification of these proteins might
have higher neurotoxicity, or whether the tree shrew
brain would be more vulnerable to these molecules.
Nonetheless, more neuropathological and neurode-
generative studies as a function of age are necessary
to clarify these key features in the Chinese tree shrew
model before concluding its superior suitability in
preclinical AD research. In addition, we need to cus-
tomize the related behavioral tests to characterize tree
shrew’s abnormalities associated with AD. We are
enthusiastic about the potential application of the AD
transgenic tree shrew model in the future.
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