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Functional genomics elucidates regulatory 
mechanisms of Parkinson’s disease-associated 
variants
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Abstract 

Background:  Genome-wide association studies (GWASs) have identified multiple risk loci for Parkinson’s disease (PD). 
However, identifying the functional (or potential causal) variants in the reported risk loci and elucidating their roles in 
PD pathogenesis remain major challenges. To identify the potential causal (or functional) variants in the reported PD 
risk loci and to elucidate their regulatory mechanisms, we report a functional genomics study of PD.

Methods:  We first integrated chromatin immunoprecipitation sequencing (ChIP-Seq) (from neuronal cells and 
human brain tissues) data and GWAS-identified single-nucleotide polymorphisms (SNPs) in PD risk loci. We then con‑
ducted a series of experiments and analyses to validate the regulatory effects of these (i.e., functional) SNPs, including 
reporter gene assays, allele-specific expression (ASE), transcription factor (TF) knockdown, CRISPR-Cas9-mediated 
genome editing, and expression quantitative trait loci (eQTL) analysis.

Results:  We identified 44 SNPs (from 11 risk loci) affecting the binding of 12 TFs and we validated the regulatory 
effects of 15 TF binding-disrupting SNPs. In addition, we also identified the potential target genes regulated by these 
TF binding-disrupting SNPs through eQTL analysis. Finally, we showed that 4 eQTL genes of these TF binding-disrupt‑
ing SNPs were dysregulated in PD cases compared with controls.

Conclusion:  Our study systematically reveals the gene regulatory mechanisms of PD risk variants (including wide‑
spread disruption of CTCF binding), generates the landscape of potential PD causal variants, and pinpoints promising 
candidate genes for further functional characterization and drug development.

Keywords:  Parkinson’s disease (PD), Genome-wide association studies (GWASs), Single-nucleotide polymorphisms 
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Background
Parkinson’s disease (PD) is a leading neurodegenerative 
disease characterized by the presence of Lewy bodies and 
the loss of dopaminergic and other cells in the substantia 
nigra [1–5]. A core symptom of PD is the motor-related 
movement disorder, including rest tremor (or shaking), 
rigidity, impaired balance and coordination, bradykine-
sia, and difficulty with walking [1]. In addition to the clas-
sic motor-related symptoms, PD is also associated with 
nonmotor symptoms such as cognitive impairments, 

Open Access

*Correspondence:  luoxiongjian@mail.kiz.ac.cn
†Rui Chen and Jiewei Liu contributed equally to this work.
1 Key Laboratory of Animal Models and Human Disease Mechanisms 
of the Chinese Academy of Sciences & Yunnan Province, Kunming 
Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, 
Yunnan, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-022-02264-w&domain=pdf


Page 2 of 18Chen et al. BMC Medicine           (2022) 20:68 

olfactory dysfunction , sleep disorders, and psychiatric 
symptoms [6]. PD prevalence increases dramatically with 
age and peaks at around 80 years old [1], and over 6 mil-
lion people worldwide are affected by PD [7]. With the 
rise of life expectancy and the increase of aging popula-
tion, the number of PD cases is estimated to grow by over 
50% by 2030 [8].

So far, the mechanisms of dopaminergic cell loss in 
PD are not fully understood. However, accumulating 
evidence indicates that both genetic and environmental 
factors are involved in PD pathogenesis. Environmental 
factors, including exposure to pesticides [9], history of 
head injuries [10], rural residence, and the use of Beta-
blockers [11], have been reported to be associated with 
the development of PD. Besides, the genetic heritability 
of PD is estimated to be around 22.7% [12], indicating an 
important role of genetic factors in this disease. Approxi-
mately 5–10% of PD cases are attributed to autosomal 
dominant or recessive inheritance [13], and several path-
ogenic genes such as SNCA, LRRK2, PARK2, and PINK1 
have been identified [12]. Nevertheless, mutations of 
these genes only explain a small proportion of PD cases, 
yet most PD cases develop a non-Mendelian form due to 
a combination of genetic and environmental factors. To 
identify risk variants for PD, several genome-wide associ-
ation studies (GWAS) have been conducted and multiple 
risk loci have been identified [12, 14–18], providing some 
novel insights into the genetic architecture of PD. How-
ever, challenges remain in elucidating the genetic mech-
anisms of PD. First, the majority of the PD risk variants 
identified by GWAS are located in noncoding regions 
[19], suggesting that they might confer the risk of PD by 
regulating gene expression rather than directly changing 
the coding sequences of genes. This hypothesis is sup-
ported by a recent discovery that PD-associated variants 
are enriched in regulatory regions [19]. Second, identi-
fying functional variations in the risk loci and elucidat-
ing their regulatory mechanisms remain difficult due to 
the complexity of linkage disequilibrium (LD) and gene 
regulation.

To address these challenges, we have herein system-
atically performed the first functional genomics study of 
PD. Through integrating chromatin immunoprecipita-
tion sequencing (ChIP-Seq) and position weight matrix 
(PWM) data, we identified 44 TF binding-disrupting 
SNPs in 11 PD risk loci. We further validated the regu-
latory effects of 15 TF binding-disrupting SNPs with a 
series of experiments, including reporter gene assays, 
allele-specific expression (ASE), transcription factor (TF) 
knockdown, and CRISPR-Cas9-mediated genome edit-
ing. In addition, we also prioritized the potential target 
genes of these TF binding-disrupting SNPs using eQTL 
analysis. Finally, we compared the expression levels of 

the prioritized target genes in PD cases versus controls 
using expression data from a recent study by Marshall 
et  al. [20]. Our study demonstrates the complex regula-
tory structure of PD risk variants (including widespread 
disruption of CTCF binding), identifies novel target 
genes regulated by the functional PD risk variants, and 
shows expression dysregulation of several target genes in 
PD cases. These results provide potential targets for the 
development of novel diagnostic and therapeutic strate-
gies for PD.

Methods
GWASs used in this study
We used the genome-wide significant (GWS) SNPs 
reported by Nalls et al. [21] and Chang et al. [18]. In brief, 
Nalls et al. [21] performed a meta-analysis of PD GWAS 
(including 13,708 cases and 95,282 controls) and identi-
fied 27 GWS loci. Chang et  al. [18] identified 41 GWS 
loci (17 novel) by meta-analyzing 26,035 PD cases and 
403,190 controls. In total, 44 GWS index SNPs (Addi-
tional file  1: Table  S1) [18, 21] from studies of Nalls 
et al. [21] and Chang et al. [18] were used in this study. 
Detailed information about the PD GWASs can be found 
in previous studies [18, 21].

Extraction of SNPs in LD with the index SNPs
In order to capture potential common variants that are in 
LD with the 44 GWS index SNPs [18, 21], we extracted 
SNPs in LD (r2 > 0.6) with each index SNP using geno-
type data of Europeans (as most of PD risk variants were 
identified in populations of European ancestry) from the 
1000 Genomes project [22]. Considering that different 
LD thresholds (r2) were used in different genetic studies 
to define whether interest SNPs were in LD, for exam-
ple, Shriner et al. [23] and Chen et al. [24] used r2 ≥ 0.3 
to select variants in LD with the reported risk variants, 
Ardlie et al. [25] showed that an r2 of 1/3 might be use-
ful for LD determination for genetic mapping, Lee et al. 
[26] used r2 > 0.5 and the schizophrenia working group 
of the Psychiatric Genomics Consortium [27] used r2 > 
0.6 to define whether flanking SNPs were in LD with the 
reported risk variants, we performed an extensive litera-
ture search to select a proper r2 threshold in this study. 
We noted that r2 > 0.6 was widely used to extract SNPs 
in high LD with the reported lead SNPs in many studies 
[28–41]. Of note, though r2 > 0.8 was used to define SNPs 
in strong LD [42–44], we utilized the widely accepted 
threshold (r2 > 0.6) in this study based on following con-
siderations: First, r2 > 0.6 was widely accepted to define 
SNPs in high LD with the reported index SNPs [28–41]. 
Second, we considered both the degree of LD and the 
number of included SNPs. A more stringent r2 (e.g., 0.8) 
reduces the number of included SNPs, which may result 
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in omission of many potential functional SNPs. Third, 
previous studies have showed that functional SNPs might 
be in low LD with the reported lead SNPs in some cases 
[45–47]. We thus selected the widely used r2 threshold (r2 
> 0.6) in this study. PLINK software (version 1.9) [48] was 
used for LD analysis and SNP extraction. Genotype data 
of 503 Europeans from the 1000 Genomes project (Phase 
3) were downloaded for LD calculation. We performed 
LD analysis to extract LD SNPs of the PD GWS index 
SNPs, and only SNPs located within 1 MB of the index 
SNPs were included (--ld-window-kb 1000). LD value 
(r2 cutoff) was set at 0.6 (--ld-window-r2 0.6); thus, SNPs 
were extracted if the LD values between these SNPs and 
the index SNP exceeds 0.6.

Functional genomics pipelines used to identify risk SNPs 
that affect TF binding
Our functional genomics pipelines include 3 major steps: 
Firstly, ChIP-Seq experiments performed in human brain 
tissues or neuronal-associated cell lines were obtained 
from ENCODE [49]. Secondly, we used MEME [50] to 
derive the DNA binding motifs of each TF, with the use 
of the obtained ChIP-Seq data from ENCODE. Thirdly, 
we extracted the flanking sequence of the SNPs that are 
in LD with the reported index SNPs. We then used FIMO 
[51] to scan whether the flanking sequence around each 
test SNP containing binding motif of TFs. Detailed pro-
cedures are as follows:

Step 1: ChIP‑Seq data processing
To identify the DNA binding motifs of TFs, we down-
loaded the ChIP-Seq data from ENCODE (https://​www.​
encod​eproj​ect.​org/) [49]. The tissues/cell lines down-
loaded from ENCODE included astrocytes of the cerebel-
lum, BE2C, brain microvascular endothelial cell, choroid 
plexus epithelial cell, H54, medulloblastoma, neural cell 
derived from H1-hESC, neural cell, PFSK-1, SH-SY5Y, 
SK-N-MC, and SK-N-SH. More details about the ChIP-
Seq data have been described in our previous studies 
[52, 53]. As PD is a brain disorder, only ChIP-Seq data (a 
total of 34 TFs) from human brain tissues and neuronal 
cell lines were downloaded. Detailed processing pipelines 
have been described in previous studies [52–54]. Briefly, 
the downloaded Fastq files were firstly processed using 
the FastQC software (http://​www.​bioin​forma​tics.​babra​
ham.​ac.​uk/​proje​cts/​fastqc/) to evaluate sequence qual-
ity, and low-quality reads and adapter sequences were 
removed using Btrim64 (with the use of parameters “-a 
20 -l 20”) [55]. Clean reads were then mapped to the 
human hg19 reference genome using Bowtie (version 
1.1.2) (with the following parameters: “-n 2 -e 70 -m 2 -k 
2”) [56]. The mapped SAM files were further converted 

into bam format, then sorted and indexed using samtools 
software [57]. Finally, MACS (version 1.4) software [58] 
was used for peak calling by using the converted bam 
files (with the use of parameters: “–keep-dup=1 -f BAM 
-w -S –call-subpeaks -g hs”). After quality control, ChIP-
Seq data of 30 TFs were retained for further analysis.

Step 2: Motif discovery of TFs
To derive the binding motifs of each TF, we performed 
motif analysis using the MEME algorithm [50]. Briefly, 
TF ChIP-Seq peaks with FDR < 0.05 (compared with its 
corresponding negative control) and flanking sequences 
(± 20 bp) of the top 500 peaks (ranked by peak height) 
were extracted. The extracted sequences were then ana-
lyzed using MEME [50] to derive the binding motifs with 
the following parameters: “-nmotifs 5 -minw 6 -maxw 
20.” Position weight matrix (PWM) is used to represent 
the binding sequence of a specific motif, and PWM could 
be used to represent consensus sequences (which reflect 
the pattern of a set of biological sequences) [50]. The 
derived motifs (from the ChIP-Seq data) were further 
compared with public TF motif databases, which include 
7699 PWMs from JASPAR, Uniprobe, Hi-SELEX, and 
other resources (please refer to our previous papers for 
details [52, 53]), and the best-matched motif was used for 
further analysis.

Step 3: Identification of TF binding‑disrupting SNPs
To test whether different alleles of the test SNPs affect 
TF binding, we firstly extracted flanking sequence (± 20 
bp) of each test SNP. These sequences (41 bp, surround-
ing each test SNP), and the DNA binding motifs (derived 
from ChIP-Seq data, then compared with PWM data-
bases to obtain the best-matched motifs) were used as 
inputs for find individual motif occurrences (FIMO) anal-
ysis [51]. To identify whether a given PWM occurred in 
the genomic sequence containing a given SNP, FIMO was 
used to scan the genomic sequence (containing a given 
SNP). The matched PWM overlaps with the test SNP for 
at least one base and the FIMO log-likelihood ratio (LLR) 
was set to P < 1 × 10−3 to define whether a SNP affected 
TF binding affinity.

In summary, we firstly used FastQC, Btrim64 [55], 
Bowtie [56], MACS [58] for quality control, reads map-
ping, and peak calling of the ChIP-Seq data. We then 
utilized MEME [50] to analyze the called peaks for each 
TF to obtain DNA binding motifs of TFs. Finally, we 
used FIMO [51] to scan motif occurrence around the 
flanking sequence of the test SNP. The flow chart of our 
functional genomics study is shown in Fig. 1, and more 
detailed information can be found in previous studies 
[52–54].

https://www.encodeproject.org/
https://www.encodeproject.org/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Annotation of variants
To examine the genomic locations of the identified 
SNPs, we used ANNOVAR [59] (https://​annov​ar.​openb​
ioinf​ormat​ics.​org/​en/​latest/) for variant annotation. The 
annotation files (hg19 genome build) were downloaded 
for annotation.

DNase‑Seq and histone modification analysis
We explored whether a given SNP was located in an 
actively transcribed genomic region by using DNase-Seq 
and histone modification data from the human brain tis-
sues or neuronal-associated cell lines. Detailed informa-
tion about DNase-Seq and histone modification analyses 
was described in our previous studies [52, 53].

Fig. 1  Overview of the study. a We first processed the ChIP-Seq data (from human brain or neuronal cells) to derive the binding motifs of 
the transcription factors (TFs). b We then investigated if the index SNPs (or SNPs in LD with the index SNPs) disrupt binding of TFs using find 
individual motif occurrences (FIMO). c Finally, a series of experiments and analyses were conducted to validate the regulatory effects of the TF 
binding-disrupting SNPs

https://annovar.openbioinformatics.org/en/latest/
https://annovar.openbioinformatics.org/en/latest/
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Cell culture
The SH-SY5Y (human neuroblastoma cell line) and U251 
(human glioblastoma cell line) cell lines used in this study 
were obtained from the Cell Bank of Kunming Institute 
of Zoology, Chinese Academy of Sciences. SH-SY5Y cells 
were cultured in high-glucose DMEM (Gibco, Cat. No: 
C12430500BT) supplemented with 10% FBS (Gibco, Cat. 
No: 10091148), 10 mM sodium pyruvate solution (Gibco, 
Cat. No: 11360070), 1% penicillin and streptomycin (100 
U/ml), and 1× minimum essential medium nonessential 
amino acid solution (Gibco, Cat. No: 11140050). U251 
cells were cultured in high-glucose DMEM (Gibco, Cat. 
No: C11995500BT) supplemented with 10% FBS (Gibco, 
Cat. No: 10091148), and 1% penicillin and streptomy-
cin (100 U/ml). Cells were passaged when the density 
reached about 80 to 90% confluence. Cells were cultured 
at 37 °C in 5% CO2. Mycoplasma test (PCR) was con-
ducted periodically to make sure that these cell lines were 
mycoplasma-free.

Vector construction
Based on the genomic locations of the test SNPs, we 
used pGL4.11[luc2P] vector and pGL3 promoter vector 
in this study. If the test SNPs were located in the pro-
moter regions, the pGL4.11[luc2P] vectors were used. 
Otherwise, pGL3 promoter vectors were used. Specific 
primers (Additional file 1, Table S2) were used to amplify 
the genomic sequences (about 300–800 bp) contain-
ing the target SNPs. The obtained genomic sequences 
were then cloned into reporter vectors. After trans-
forming DH5α cells, single colonies were selected and 
Sanger sequencing was used to confirm the sequences of 
inserted regions. More detailed information about vec-
tor construction can be found in our previous studies 
[52, 53].

Reporter gene assays
SH-SY5Y and U251 cells were transfected with the 
constructed pGL3 promoter or pGL4.11[luc2P] vec-
tors. The pRL-TK Renilla vector was used as the inter-
nal control. SH-SY5Y and U251 cells were plated into 
96-well plates at densities of 1.0 × 105 cells/well and 
1.0 × 104 cells/well, respectively. After culture for 12 
h, Lipofectamine™ 3000 (Invitrogen, Cat.No: L3000-
015) was used to transfect the above vectors. SH-SY5Y 
and U251 cells were transfected with 150 ng of the 
pGL4.11[luc2P] or the pGL3, and 50 ng of the pRL-TK 
Renilla as the internal control. Forty-eight hours post-
transfection, luciferase activity was measured by a dual 
luciferase reporter gene assay system (Promega, Cat.No: 
E1960). Differences were calculated with two-tailed Stu-
dent’s t test, and the significance threshold was set at P 
< 0.05.

Allele‑specific expression analysis
The imbalanced expression of the two parental alleles is 
called allele-specific expression (ASE). ASE analysis is a 
within-individual analysis that compares the expression 
levels of a specific transcript with different alleles on a 
specific SNP using RNA sequencing (RNA-Seq) data. 
ASE analysis requires that the test SNP in the transcript 
is heterozygous. The expression level of a specific tran-
script in an individual is quantified by RNA-Seq, and if 
this transcript contains a heterozygous SNP of interest, 
the counts of this transcript containing either reference 
allele or alternative allele were calculated. The transcript 
counts ratio between the two alleles was compared with 
the expected null ratio by a Binomial test to determine 
the significance of ASE of a variant. We utilized Geno-
type-Tissue Expression Version 8 (GTEx V8) data (only 
brain tissues were included) to explore whether the 44 TF 
binding-disrupting SNPs identified in this study showed 
ASE in the human brain tissues [60, 61]. The GTEx Con-
sortium (V8) performed ASE analysis as follows. Firstly, 
the GTEx RNA-seq data were mapped to hg38 reference 
genome by STAR software [62]. Secondly, the SNP-level 
ASE were detected by GATK ASEReadCounter tool [63], 
which requires RNA-Seq bam files (per subject across all 
tissues) and vcf files (contains the genotype of the vari-
ants) to perform ASE. Thirdly, for each SNP in the raw 
ASE output, only SNPs with ≥ 8 reads were retained. 
For each SNP, the expected null ratio is calculated, and 
a Binomial P is used to determine the statistical signifi-
cance of the ASE (by comparing the ratio of RNA-Seq 
ref/alt allele with the expected null ratio). More details 
about ASE analysis can be found in GTEx original papers 
(https://​gtexp​ortal.​org/) [60, 61].

eQTL analysis
The brain eQTL data sets used in this study were from 
four previous studies: the Common Mind Consortium 
(CMC) (N = 467) [64], the Genotype-Tissue Expression 
(GTEx) v7 (13 brain regions, N ranges from 80 to 154) 
[65], the Lieber Institute for Brain Development (LIBD) 
brain eQTL (N = 412) [66], and the xQTL map of the 
human brains (xQTL) (N = 494) [67]. Gene expression 
levels in all eQTL datasets were quantified with RNA-
Seq. In brief, the CMC eQTL summary statistics were 
derived from the dorsolateral prefrontal cortex (DLPFC) 
of 467 subjects [64]. The GTEx dataset collected a total of 
13 brain tissues from healthy subjects, with sample sizes 
ranging from 80 to 154 in different brain regions [65]. 
The LIBD dataset contains five levels (including gene, 
exon, junction, transcript, and expressed region) expres-
sion data from the DLPFC of 412 subjects [66], and only 
gene-level eQTLs were used in our study. The xQTL is 

https://gtexportal.org/
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a multi-omic dataset comprising RNA sequence, DNA 
methylation, and histone acetylation from the DLPFC of 
494 individuals [67]. More detailed information can be 
found in previous studies [64–67].

Knockdown of the corresponding TFs
We used short hairpin RNAs (shRNAs) to knock down 
the TFs and knockdown efficiency was assessed with 
real-time quantitative PCR (RT-qPCR). The follow-
ing TFs were knocked down with shRNAs, including 
SIN3A, SMC3, CTCF, RAD21, and REST. The annealed 
shRNAs were ligated into the pLKO.1 vector, and the 
constructed vectors were used to transform Stbl3 com-
petent cells (Beyotime, Cat.No: D0378) (produced using 
the Supercompetent Cell Preparation Kit (Beyotime, Cat.
No: D0302)). DNA sequencing was used to verify the 
sequences of the inserted shRNAs. Lentiviral packaging 
vectors pMD2.G (Addgene, Cat. No: 12259) and psPAX2 
(Addgene, Cat. No: 12260) and shRNA-expressing vec-
tor were cotransfected into HEK293T cells using the PEI 
transfection reagent (Sigma, Cat. No: 408727). Forty-
eight hours posttransfection, the viral supernatants were 
harvested, filtered, and directly added into the culture 
medium of SH-SY5Y cells. The cells were selected with 
puromycin (2μg/mL) (Sigma, Cat. No: 540222) for 1 
week. The shRNA sequences are provided in Additional 
file 1, Table S3.

Knockout of genomic regions containing the target SNPs
To evaluate the potential regulatory impact of the 
genomic regions (containing the TF binding-disrupting 
SNP) on target genes, we used CRISPR-Cas9-mediated 
gene editing to knock out the given genome regions. For 
each genomic region of interest, two guide RNAs (sgR-
NAs) were designed with the CRISPR sgRNA Design Tool 
(https://​zlab.​bio/​guide​design-​resou​rces). PX459M and 
EZ-GuideXH were used to construct the knockout (KO) 
vector backbone. The vector PX459M and EZ-GuideXH 
were firstly linearized with the restriction enzyme BbsI, 
then expression constructs of the sgRNAs (sgRNA1 and 
sgRNA2)were prepared by cloning annealed sgRNAs into 
linearized PX459M and EZ-GuideXH vectors. After vali-
dating with Sanger sequencing, the construct expressing 
sgRNA2 from EZ-GuideXH was cloned into a linearized 
PX459M which express sgRNA1 with the restriction 
enzymes XhoI and HindIII. All recombinant plasmids 
were generated using the ClonExpress II One Step Clon-
ing Kit (Vazyme, Cat.No: C112-01). And the knockout 
experiments were performed in HEK293T cells.

Real‑time quantitative PCR (RT‑qPCR) analysis
Total RNA was extracted with TRIzol™ LS Reagent (Inv-
itrogen, Cat.No: 10296028), treated with gDNA Eraser 

(Takara, Cat.No: RR047A) to remove potential genomic 
DNA and reversely transcribed into cDNA with Pri-
meScript™ RT Kit according to the manufacturer’s 
instructions. The expression levels of the target genes 
were determined by qPCR using TB Green™ Premix Ex 
Taq™ II (TliRNaseHPlus) (Takara, Cat.No: RR820A) in 
a QuantStudio™ 12K Flex (Applied Biosystems) instru-
ment or a CFX96 Touch™ Real-Time PCR detection 
system. All of the experiments were conducted in trip-
licates, and gene expression was determined with the 
2−ΔΔCt method (ACTB was used as internal control) 
[68]. Primer sequences are provided in Additional file 1, 
Table  S4. Differences were calculated with two-tailed 
Student’s t test, and the significance threshold was set at 
P < 0.05.

Expression analysis of target genes in PD cases 
and controls
To explore the expression levels of the potential tar-
get genes of the identified TF binding-disrupting SNPs 
in PD cases and controls, we used the expression data 
generated by Marshall et  al. [20]. Briefly, the prefrontal 
cortex of 24 PD cases and 12 controls were collected 
by Marshall et  al. [20], and gene expression levels were 
quantified with RNA sequencing. Detailed information 
on sample description, tissue collection, RNA sequenc-
ing, and statistical analyses were provided in the original 
paper [20].

Brain single‑cell expression analysis
We used the Cortical Development Expression (CoDex) 
viewer to perform single-cell expression analysis of the 
PD target genes identified in this study [69]. CoDex 
viewer includes 40,000 single-cell RNA-Seq expression 
profiles from the developing human cortex. CoDEx is a 
user-friendly data portal that facilitates data access and 
browsing. The detailed information on sample collection 
information, data processing, cell clustering, and analy-
sis approaches have been described in the original paper 
[69] and the CoDex viewer website (http://​solo.​bmap.​
ucla.​edu/​shiny/​webapp/).

Results
Functional genomics identified 44 TF binding‑disrupting 
PD risk SNPs
We first extracted the SNPs in LD (r2 > 0.6) with the 
44 index SNPs reported by two PD GWASs [18, 21]. 
In total, 6288 SNPs were extracted (Additional file  2, 
Table  S5). By integrating the index SNPs (including 
SNPs in LD with the index SNPs) and the DNA binding 
motifs derived from ChIP-Seq data (Fig. 1), we identi-
fied 44 SNPs that disrupted the binding of 12 TFs (Fig. 2 
and Additional file  1, Table  S6). Among the 44 TF 

https://zlab.bio/guidedesign-resources
http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/
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binding-disrupting SNPs, 12 disrupted CTCF binding, 
11 disrupted POLR2A binding, 8 disrupted REST bind-
ing, and 7 disrupted RAD21 binding (Fig.  2a). These 
44 TF binding-disrupting SNPs were from 11 PD risk 

loci (Additional file 1, Table S6). Of note, approximately 
84% (37/44) TF binding-disrupting SNPs were located 
in the intronic and intergenic regions (Fig. 2b), suggest-
ing their potential regulatory impact on transcription. 

Fig. 2  The distribution of TF binding-disrupting SNPs in the human genome. a The number of SNPs that affect the binding affinity of each TF. b 
Distribution of the binding-disrupting SNPs in the human genome. c Heatmap showed the number of SNPs that affect binding of two or more TFs
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We noticed that a small proportion of SNPs disrupted 
binding of two or three TFs (Fig. 2c), e.g., 5 SNPs dis-
rupted the binding of CTCF and RAD21, and 4 SNPs 
disrupted the binding of CTCF and SMC3. These 
results identified the functional (or potential causal) 
SNPs in the reported PD risk loci, indicating that they 
may confer risk for PD through affecting TF binding. In 
addition, these results also suggested that the TF bind-
ing-disrupting SNPs may represent the potential causal 
variants at these risk loci.

Reporter gene assays validated the regulatory effects of 15 
identified TF binding‑disrupting SNPs
Our functional genomic study identified 44 SNPs that 
disrupted the binding of 12 TFs. To further verify the 
regulatory effect of these TF binding-disrupting SNPs, 
we randomly selected 15 SNPs for reporter gene assays 
(Additional file 1, Table S7). Among the 15 tested SNPs, 
11 (over 73%) showed regulatory effects (i.e., different 
alleles at these 11 SNPs affected the reporter gene activity 
significantly (uncorrected P < 0.05)) in both SH-SY5Y and 

Fig. 3  Validation of the regulatory effects of the TF binding-disrupting SNPs with dual luciferase reporter gene assays. Six TF binding-disrupting 
SNPs showed significant differences between different alleles, with the same allelic effect direction in both SH-SY5Y and U251 cells. a The constructs 
containing the C allele of rs3735901 exhibited significantly higher luciferase activity than the construct containing the T allele in SH-SY5Y and U251 
cells. b The C allele of rs11136093 conferred significantly higher luciferase activity than the T allele in SH-SY5Y and U251 cells. c The reporter vectors 
containing the G allele of rs62061727 displayed significantly higher luciferase activity than the T allele in SH-SY5Y and U251 cells. d The constructs 
carrying the T allele of rs62061809 exhibited significant higher luciferase activity than the constructs carrying the C allele in SH-SY5Y and U251 cells. 
e The reporter vectors containing the T allele of rs62064663 showed significantly higher luciferase activity than the G allele in SH-SY5Y and U251 
cells. f The reporter vectors containing the single base deletion of rs143191191 showed significantly higher luciferase activity than the A allele in 
SH-SY5Y and U251 cells. N = 8 for the control group, n = 16 per experimental group for SH-SY5Y and U251 cells. Two-tailed Student’s t test was 
used for statistical analyses. *P < 0.05, **P < 0.01, ***P < 0.001

Fig. 4  Disruption of REST and SIN3A binding by SNP rs6781790. a,b rs6781790 disrupts the binding of REST and SIN3A TFs. c The 1 kb 
genomic sequence surrounding SNP rs6781790 was displayed with DNase-Seq signal (light blue), the transcription factor (TF) chromatin 
immunoprecipitation, and sequencing (ChIP-Seq) signal (green), and histone modifications (purple). d Reporter gene assays showed that the T 
allele of rs6781790 conferred significantly higher luciferase activity than the C allele in SH-SY5Y and U251 cells. e Allele-specific expression (ASE) 
analysis showed that different alleles of rs6781790 exhibited significant preferential expression in human brain tissues. f–i SIN3A knockdown 
resulted in significant downregulation of GPX1, P4HTM, and WDR6, indicating that these genes are regulated by the SIN3A. N = 8 for the control 
group, n = 16 per experimental group in SH-SY5Y and U251 cells. n = 3 per group in f–i. Two-tailed Student’s t test was used for statistical analyses. 
**P < 0.01, ***P < 0.001

(See figure on next page.)
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U251 cells (Fig. 3, Additional file 1: Figure S1, Table S8). 
Of note, 9 TF binding-disrupting SNPs showed signifi-
cant luciferase differences between two different alleles, 
with the same allelic effect direction in both SH-SY5Y 
and U251 cells (Figs. 3, 4, 5, and 6 and Additional file 1, 
Table  S8), strongly suggesting the functionality of these 
9 SNPs. Among these 9 SNPs, reporter gene assays of 
rs6781790 (Fig. 4), rs11575895 (Fig. 5), and rs559943616 
(Fig.  6) are shown in Figs.  4, 5 and 6, and the reporter 
gene assays results of the remaining 6 SNPs are shown in 
Fig. 3. Four SNPs (rs7599054, rs117629202, rs145273500, 
and rs16833689) did not show regulatory effect in any 
of the cell lines. Collectively, the results provided robust 
evidence that the identified TF binding-disrupting SNPs 
were functional.

ASE analysis supported the functionality of the identified 
TF binding‑disrupting SNPs
To further investigate the regulatory effect of the identi-
fied TF binding-disrupting SNPs, we used the ASE data 
from GTEx (only brain tissues were used). We found that 
13 out of 44 TF binding-disrupting SNPs showed ASE 
(Additional file 2, Table S9) in the human brain. That is, 
the expression level of the transcript (counts from RNA-
Seq) containing the maternal allele was significantly dif-
ferent from the transcript containing the paternal allele, 
indicating that one allele was preferentially expressed 
compared with the other. In addition, we also found 
that 8 (rs6781790, rs10270788, rs2272718, rs878051, 
rs62064663, rs12150515, rs1468240, and rs17665188) out 
of the 13 ASE SNPs were in very high LD (r2 > 0.8) with 
coding SNPs (Additional file  2, Table  S10), suggesting 
that these ASE SNPs may modify the penetrance of cod-
ing variants [70]. These ASE analyses further supported 
that the identified TF binding-disrupting SNPs were 
functional.

Disruption of REST and SIN3A binding by rs6781790
We identified a TF binding-disrupting SNP (rs6781790) 
at 3p21.31. FIMO analysis showed that rs6781790 dis-
rupted the binding of REST and SIN3A (Fig. 4a,b). ChIP-
Seq data showed that REST and SIN3A can bind to the 
genomic region containing rs6781790 in the human brain 
tissues or neuronal cells (Fig. 4c). Consistent with ChIP-
Seq data, DNase-Seq data revealed that rs6781790 is 
located in a genomic region with active transcription in 

brain tissues or neuronal cells (Fig. 4c). The histone mod-
ification data further confirmed that rs6781790 is located 
in an actively transcribed genomic region (i.e., active 
regulatory element) (Fig.  4c). We tested the regulatory 
effect of rs6781790 with reporter gene assays and found 
that the T allele of rs6781790 was associated with higher 
luciferase activity compared with the C allele in both SH-
SY5Y cells and U251 cells, with the same direction of 
allelic effect (Fig.  4d). Finally, ASE analysis showed that 
the T allele was preferentially expressed compared with 
C allele (i.e., the counts of the transcript containing the T 
allele was significantly higher than the transcript contain-
ing the C allele, binominal test P = 6.37 × 10−4) (Fig. 4e). 
As rs6781790 disrupted SIN3A binding, we further 
investigated whether SIN3A knockdown (using shRNA) 
modulates the expression of potential target genes (i.e., 
eQTL genes) of rs6781790 in SH-SY5Y cells. We found 
that SIN3A knockdown resulted in significant down-
regulation of GPX1, P4HTM, and WDR6 (eQTL genes of 
rs6781790) (Fig.  4f–i), indicating that SIN3A facilitated 
the regulatory effect of rs6781790 on these genes. Taken 
together, these consistent and convergent results indi-
cated that rs6781790 is a regulatory SNP with functional 
consequences.

Disruption of CTCF, RAD21, and SMC3 binding 
by rs11575895
Our functional genomics study identified rs11575895 
as a TF binding-disrupting SNP at 17q21.31 (Fig.  5). 
rs11575895 affects the binding of CTCF, RAD21, and 
SMC3 (Fig.  5a–c). ChIP-Seq data demonstrated that 
CTCF, RAD21, and SMC3 could bind to the genomic 
sequence containing rs11575895 (Fig.  5d). The DNase-
Seq and histone modification data also showed that 
rs11575895 is located in an active regulatory element (in 
the human brain tissues or neuronal cells) (Fig.  5d). Of 
note, we noticed that rs11575895 is located in the pro-
moter region (or in the first exon, as MAPT has several 
transcripts with different lengths) of MAPT (Fig.  5e), a 
gene that was reported to be associated with PD in previ-
ous studies [14–16, 71–74].

Reporter gene assays showed that the vector contain-
ing G allele of rs11575895 exhibited significantly higher 
luciferase activity compared with A allele in both SH-
SY5Y and U251 cells (Fig. 5f ). Finally, as rs11575895 dis-
rupted the binding of CTCF, RAD21, and SMC3 TFs, we 

(See figure on next page.)
Fig. 5  Disruption of CTCF, RAD21, and SMC3 binding by SNP rs11575895. a–c Disruption of CTCF, RAD21, and SMC3 binding by SNP rs11575895. d 
SNP rs11575895 is located in a genomic region with strongly DNase-Seq, ChIP-Seq, and histone modification signals, indicating that rs11575895 is 
located in a region of active transcription in neuronal cells. e SNP rs11575895 is located in the first exon of the longest transcript of MAPT. f Reporter 
gene assays exhibited that the G allele of rs11575895 conferred significantly higher luciferase activity than the A allele in SH-SY5Y and U251 cells. N 
= 8 for the control group, n = 16 per experimental group for SH-SY5Y and U251 cells. Two-tailed Student’s t test was used for statistical analyses. **P 
< 0.01, ***P < 0.001
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explored whether the eQTL genes of rs11575895 were 
regulated by these TFs. Knockdown of CTCF resulted 
in significant downregulation of CRHR1-IT1, DND1P1, 
LRRC37A4P, and MAPT expression (Additional file  1, 
Figure S2). In contrast, knockdown of RAD21 led to 
significant upregulation of CRHR1-IT1, DND1P1, LRR-
C37A4P, and MAPT expression (Additional file  1, Fig-
ure S2). Interestingly, SMC3 knockdown resulted in 
increased expression of CRHR1-IT1, DND1P1, and LRR-
C37A4P and decreased expression of MAPT (Additional 
file  1, Figure S2). These results indicated that CTCF, 
RAD21, and SMC3 can regulate the expression of eQTL 
genes of rs11575895, and this process was likely mediated 
by the interaction between rs11575895 and these three 
TFs. These data demonstrated that rs11575895 is a func-
tional variant with a regulatory effect.

Disruption of POLR2A and CTCF binding by rs559943616
In addition to the abovementioned SNPs, we also found 
that rs559943616 disrupted the binding of POLR2A 
and CTCF (Fig.  6a,b). ChIP-Seq data showed that TFs 
POLR2A and CTCF could bind to the genomic sequence 
containing rs559943616, and DNase-Seq data showed 
that the genomic region containing rs559943616 is 
actively transcribed in human brain tissues or neuronal 
cells (Fig.  6c). We further verified the regulatory effect 
of rs559943616 with reporter gene assays and found 
that the vector containing the G allele exhibited sig-
nificantly higher luciferase activity compared with that 
containing GGA allele in both SH-SY5Y and U251 cells 
(Fig.  6d). We further knocked down CTCF and found 
significant downregulation of CRHR1-IT1, DND1P1, and 
LRRC37A4P expression in CTCF knocked down cells 
(Fig.  6e–h), indicating that the expression of CRHR1-
IT1, DND1P1, and LRRC37A4P were regulated by CTCF. 
Finally, CRISPR-Cas9-mediated genomic sequence dele-
tion (489 bp) revealed that the genomic region containing 
rs559943616 can regulate the expression of LRRC37A4P, 
DND1P1, and CRHR1-IT1 (Fig. 6i–l). Of note, we noticed 
that the expression of these three genes were down-
regulated in rs559943616 knocked-out cells compared 
with wild-type cells, suggesting that the genomic region 

containing rs559943616 may act as an enhancer for these 
three genes.

eQTL analysis identified the potential target genes 
regulated by these TF binding‑disrupting SNPs
We validated the regulatory effect of 15 identified TF 
binding-disrupting SNPs using a series of experiments, 
including reporter gene assays, TF knockdown, ASE 
analysis, and CRISPR-Cas9-mediated genome editing. 
These results suggested that the majority of TF bind-
ing-disrupting SNPs may exert their biological effect by 
regulating gene expression. We thus examined the asso-
ciations between these SNPs and gene expression using 
four human brain eQTL datasets. Among the 44 TF 
binding-disrupting SNPs, 38 showed associations with 
gene expression (uncorrected, P < 0.05) in at least one 
eQTL dataset (Additional file  2, Table  S11). Besides, 34 
SNPs showed significant associations with gene expres-
sion in at least two brain eQTL datasets (Additional file 2, 
Table  S12), and 19 SNPs showed significant associa-
tions with gene expression in at least three brain eQTL 
datasets (Additional file 2, Table S13). Of note, 12 SNPs 
showed significant associations with gene expression in 
all four brain eQTL datasets (Table 1), strongly suggest-
ing the regulatory effect of these SNPs on gene expres-
sion. The boxplots of the eQTL analyses are provided 
in Additional file  1, Figure S3 [64, 66]. Collectively, our 
eQTL analyses linked the TF binding-disrupting SNPs to 
their potential target genes.

Dysregulation of the potential target genes of the TF 
binding‑disrupting SNPs in PD cases
We further explored the expression levels of the poten-
tial target genes of the TF binding-disrupting SNPs in the 
brains of PD cases and controls using the data from Mar-
shall et  al. [20]. Among the 103 eQTL genes of the TF 
binding-disrupting SNPs, four (AMT, DALRD3, GPNMB, 
and RHOBTB2) showed significantly varied mRNA levels 
(corrected, q < 0.05) in brains of PD cases compared with 
controls (Additional file  1, Table  S14) [20], suggesting 
that these TF binding-disrupting SNPs may confer PD 
risk through regulating these genes.

Fig. 6  Verification of the regulatory effect of rs559943616 by reporter gene assays and CRISPR-Cas9-mediated genome editing. a,b SNP 
rs559943616 disrupts POLR2A and CTCF binding. c The 1 kb sequence surrounding SNP rs559943616 is marked with DNase-Seq, ChIP-Seq, and 
histone modification signals, indicating that rs559943616 is located in an actively transcribed genomic region in neuronal cells. d Reporter gene 
assays validated the regulatory effect of rs559943616. The G allele of rs559943616 conferred significantly higher luciferase activity than the GGA 
allele in SH-SY5Y and U251 cells. e–h CTCF knockdown resulted in significant downregulation of CRHR1-IT1, DND1P1, and LRRC37A4P, indicating 
that these genes are regulated by the CTCF. i–l CRISPR-Cas9-mediated genome editing revealed that deletion of the genomic region containing 
rs559943616 led to significant expression changes of LRRC37A4P, DND1P1, CRHR1-IT1. i Electrophoresis showed that the given genomic region 
containing rs559943616 was deleted. WT indicates that the length of the DNA fragments containing rs559943616 is 987 bp in wild-type cells. 
KO indicates that the length of the DNA fragments containing rs559943616 is 437 bp in edited cells. N = 8 for the control group, n = 16 per 
experimental group for SH-SY5Y and U251 cells, n = 3 per group in e–h, j–l. Two-tailed Student’s t test was used for statistical analyses. *P < 0.05, **P 
< 0.01, ***P < 0.001

(See figure on next page.)
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Discussion
Genetic studies, especially recent large-scale GWASs, 
have identified multiple PD risk loci showing robust 
associations with PD. Despite that these studies have 
provided important insights into the genetic etiology of 
PD, the potential causal variants in most loci and their 
roles in PD pathogenesis remain elusive. Extensive LD, 
the complexity of gene regulation, and the high degree 
of tissue specificity of most regulatory elements impede 
the identification of causal variants and the dissection 
of their pathogenic mechanisms. To identify the poten-
tial causal (or functional) variants in the reported PD 
risk loci and to elucidate their regulatory mechanisms, 
we have herein carried out a functional genomic study. 
We identified 44 SNPs (from 11 risk loci) affecting the 
binding of 12 TFs and we performed a series of experi-
ments and analyses to validate their regulatory effects. 
In addition, we also identified the potential target genes 
regulated by these TF binding-disrupting SNPs through 
eQTL analysis. Finally, we showed that 4 eQTL genes of 
these TF binding-disrupting SNPs were dysregulated in 
PD cases compared with controls.

Our study provides novel insights into the genetic 
mechanisms of PD. First, we showed that the regulatory 
mechanisms of PD risk variants are complex. The 44 TF 
binding-disrupting SNPs disrupt the binding of 12 TFs, 
with approximately 27% (12/44) disrupting CTCF bind-
ing. Second, we identified the TF binding-disrupting 
SNPs from approximately 25% reported PD risk loci 
(11, a total of 44 GWS index SNPs were included in this 
study). These SNPs may represent promising functional 
or causal variants for these loci. Third, over 68% (30/44) 
of the 44 TF binding-disrupting SNPs are located in 
intronic regions, highlighting the important roles of 
intronic regions in regulating PD risk genes.

Our study has several strengths. First, considering the 
high degree of tissue specificity of genetic regulatory ele-
ments [75, 76], only ChIP-Seq data from brain tissues or 
neuronal cell lines were included in this study. This strict 
criterion guaranteed that only risk variants located in 
active regulatory regions (with corresponding transcrip-
tion factors binding) in the brain were examined. Second, 
we conducted a relatively high-throughput study to sys-
tematically characterize the regulatory mechanisms of all 
the reported PD risk loci and identified functional vari-
ants at more than 25% of these loci. Third, we validated 
the regulatory effects of the 15 identified TF binding-dis-
rupting SNPs with a series of experiments and analyses. 
Fourth, our study linked the identified TF binding-dis-
rupting SNPs to their potential target genes. Therefore, 
we have translated the genetic associations into specific 
genes, an important step for further mechanism dissec-
tion and drug development. Finally, we illustrated how 

the identified functional SNPs conferred the risk for PD 
by regulating gene expression. For example, our reporter 
gene assays showed that cells transcribed with different 
alleles of rs6781790 exhibited significant differences in 
reporter gene activity, and the C allele led to lower lucif-
erase activity (Fig. 4). Through eQTL analysis, we found 
that rs6781790 is associated with the expression of sev-
eral genes in human brain, including GPX1, P4HTM, 
WDR6, NCKIPSD, AMT, CCDC71, and DALRD3 (Addi-
tional file 1, Figure S3). In addition, GTEx eQTL analysis 
showed that there were significant associations between 
PD functional variants and gene expression in the Sus-
tantia Nigra (a key brain region for PD pathogenesis), 
including the association between rs6781790 and WDR6 
(P = 1.6 × 10−6) expression. For AMT and DALRD3, 
the results of eQTL analysis and reporter gene assays 
were consistent (i.e., the C allele was associated with 
lower reporter gene activity and expression of AMT and 
DALRD3), suggesting this SNP may contribute to PD 
risk by regulating the expression of AMT and DALRD3. 
We further performed differential expression analysis 
and found that the expression of AMT (P = 2.13 × 10−3) 
and DALRD3 (P = 2.93 × 10−3) were significantly down-
regulated in brains of PD cases compared with controls. 
Taken together, we present convergent and consistent 
lines of evidence suggesting that rs6781790 may con-
fer PD risk by regulating the expression of AMT and 
DALRD3. Therefore, perturbation of the expression of 
PD risk genes (e.g., AMT and DALRD3) may underlie the 
identified functional PD risk variants and have pivotal 
roles in its pathogenesis.

Single-cell expression analysis of the potential target 
genes (Table  1) of the identified TF binding-disrupt-
ing SNPs showed widespread expression of GPX1 in 
many neuronal cell types. However, none of these genes 
showed cell-specific expression [69] (Additional file  1, 
Figure S4-S14), suggesting that these genes may have 
roles in many cell types.

Our study suggests that rs11575895 may be one of 
the plausible functional SNPs at the 17q21.31 locus. 
First, Our study has shown that most of the TF binding-
disrupting SNPs identified by functional genomics are 
functional, which is consistent with the findings of pre-
vious studies [52–54]. Second, rs11575895 affects the 
binding of CTCF, RAD21, and SMC3 TFs, and ChIP-Seq 
data demonstrated that CTCF, RAD21, and SMC3 can 
bind to the genomic sequence containing rs11575895. 
Third, reporter gene assays showed that the vector con-
taining G allele of rs11575895 exhibited significantly 
higher luciferase activity compared with A allele in both 
SH-SY5Y and U251 cells. Finally, knockdown of CTCF, 
RAD21, and SMC3 resulted in significant changes in 
some eQTL genes of rs11575895. These results suggested 
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that rs11575895 may be a functional variant with regu-
latory effect. However, we noted that rs11575895 is 
located in the promoter region (or in the first exon, as 
MAPT has several transcripts with different lengths) of 
MAPT (Fig.  5e), a gene that was reported to be associ-
ated with PD in previous studies [14–16, 71–74]. MAPT 
encodes the microtubule-associated protein tau (MAPT), 
which promotes microtubule assembly and stability [77] 
and was associated with frontotemporal dementia [78]. 
MAPT is divided into two major haplotypes, H1 and H2 
[79]. Previous studies have shown that H1 haplotype of 
the MAPT is associated with the pathogenesis of PD [80], 
and a higher H1 expression level was associated with an 
increased risk of PD [81]. In addition, dysmethylation 
of MAPT promoter was found in leukocytes and brain 
tissues of PD patients [82, 83]. Though these lines of 
evidence suggest the functionality of rs11575895, consid-
ering the high degree of complexity of this region in PD, 
more work is needed to validate if rs11575895 is a bona 
fide functional SNP at this locus.

There are several limitations of this study. First, con-
sidering that the main cell types involved in PD patho-
genesis are dopaminergic neurons, astrocytes, and 
microglia, it is ideal to investigate the regulatory effects 
of risk variants in these cell types. Nevertheless, there are 
no ChIP-Seq data of dopaminergic neurons and micro-
glia in ENCODE at present. Thus, we only used cell 
types (including astrocytes) included in ENCODE in this 
study. We will perform additional analysis once related 
ChIP-Seq are available, which will provide novel insights 
into PD pathophysiology. Second, only ChIP-Seq data 
of 30 TFs were included in this study. Given that there 
are more than 30 TFs expressed in the brain, risk vari-
ants that disrupt TFs not covered in this study might also 
exert functional impacts on PD. Third, while we have 
identified TF binding-disrupting SNPs in 11 of the 44 PD 
risk loci, utilizing only data of the 30 TFs might have lim-
ited our identification of such SNPs at the other 33 loci. 
Finally, only single-nucleotide polymorphisms were ana-
lyzed in this study. Considering the importance of other 
types of genetic variations (e.g., copy number variations 
(CNVs), chromosomal structural variants, rare muta-
tions, and de novo mutations) in complex disease, further 
studies are needed to elucidate the genetic mechanisms 
of PD relevant to these variations.

Conclusions
In summary, we identified 44 SNPs (from 11 risk loci) 
affecting the binding of 12 TFs and performed a series 
of experiments and analyses to validate their regula-
tory effects. Our study revealed the complex gene 
regulatory mechanisms of PD risk variants, including 
widespread disruption of CTCF and POLR2A binding. 

In addition, our study also pinpoints promising candidate 
genes for further functional characterization and drug 
development.
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human neocortex (http://solo.bmap.ucla.edu/shiny/webapp/) 

http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/
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Additional file 1, Figure S7: GPX1 gene expression in single-cell dataset of developing human 

neocortex (http://solo.bmap.ucla.edu/shiny/webapp/) 

Additional file 1, Figure S8: KAT8 gene expression in single-cell dataset of developing human 

neocortex (http://solo.bmap.ucla.edu/shiny/webapp/) 

Additional file 1, Figure S9: NCKIPSD gene expression in single-cell dataset of developing 

human neocortex (http://solo.bmap.ucla.edu/shiny/webapp/) 

Additional file 1, Figure S10: NUPL2 gene expression in single-cell dataset of developing human 

neocortex (http://solo.bmap.ucla.edu/shiny/webapp/) 

Additional file 1, Figure S11: P4HTM gene expression in single-cell dataset of developing 

human neocortex (http://solo.bmap.ucla.edu/shiny/webapp/) 

Additional file 1, Figure S12: PDLIM2 gene expression in single-cell dataset of developing 

human neocortex (http://solo.bmap.ucla.edu/shiny/webapp/) 

Additional file 1, Figure S13: STX4 gene expression in single-cell dataset of developing human 

neocortex (http://solo.bmap.ucla.edu/shiny/webapp/) 

Additional file 1, Figure S14: WDR6 gene expression in single-cell dataset of developing human 

neocortex (http://solo.bmap.ucla.edu/shiny/webapp/) 

Additional file 1, Table S1: 44 PD index SNPs used in this study 

Additional file 1, Table S2: PCR primers used to construct DNA fragments for reporter gene 

assays 

Additional file 1, Table S3: shRNAs used to knockdown of TFs 

Additional file 1, Table S4: RT-qPCR primers used in this study 

http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/


3 
 

Additional file 2, Table S5: PD index SNPs and SNPs that were in linkage disequilibrium with 

the index SNPs (r2 > 0.6)  

Additional file 1, Table S6: Identification of 44 TF binding-disrupting SNPs from the 44 PD risk 

loci 

Additional file 1, Table S7: 15 TF binding-disrupting SNPs for reporter gene assays  

Additional file 1, Table S8: Summary of the reporter gene assays 

Additional file 2, Table S9: Summary of ASE analysis 

Additional file 2, Table S10: PD ASE SNPs were in linkage disequilibrium with coding SNPs 

Additional file 2, Table S11: Association significance between the TF binding-disrupting SNPs 

and gene expression in the human brain tissues 

Additional file 2, Table S12: Association significance between the TF binding-disrupting SNPs 

and gene expression in the human brain tissues (at least two brain eQTL datasets) 

Additional file 2, Table S13: Association significance between the TF binding-disrupting SNPs 

and gene expression in the human brain tissues (at least three brain eQTL datasets) 

Additional file 1, Table S14: Identification of differentially expressed genes in the prefrontal 

cortex of PD patients using RNA-Seq 
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Table S1. 44 PD index SNPs used in this study 
Index SNPsa Chr Position 

rs35749011 1 155135036 

rs823118 1 205723572 

rs4653767 1 226916078 

rs10797576 1 232664611 

rs34043159 2 102413116 

rs6430538 2 135539967 

rs353116 2 166133632 

rs1474055 2 169110394 

rs4073221 3 18277488 

rs12497850 3 48748989 

rs143918452 3 52816840 

rs115185635 3 87520857 

rs12637471 3 182762437 

rs34311866 4 951947 

rs11724635 4 15737101 

rs6812193 4 77198986 

rs356182 4 90626111 

rs78738012 4 114360372 

rs2694528 5 60273923 

rs9468199 6 27681215 

rs9275326 6 32666660 

rs199347 7 23293746 

rs2740594 8 11707174 

rs591323 8 16697091 

rs2280104 8 22525980 

rs13294100 9 17579690 

rs10906923 10 15569598 

rs117896735 10 121536327 

rs3793947 11 83544472 

rs329648 11 133765367 

rs76904798 12 40614434 

rs11060180 12 123303586 

rs11158026 14 55348869 

rs1555399 14 67984370 

rs8005172 14 88472612 

rs2414739 15 61994134 

rs11343 16 19279464 
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rs14235 16 31121793 

rs4784227 16 52599188 

rs601999 17 40698158 

rs17649553 17 43994648 

rs12456492 18 40673380 

rs62120679 19 2363319 

rs8118008 20 3168166 

Note: a Index SNPs were from the study of Nalls et al. and Chang et 
al. 
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Table S2. PCR primers used to construct DNA fragments for reporter gene assays 
Primer name Primer sequence (5'>3') 
rs3735901-506-Fa GCCTTCTTTCCTGATGGGATTCT 

rs3735901-506-Ra GCCACCAAGGGAGGACTGAG 

rs3735901-C>T* CAGGTGGGTTGGGGGGCCCCCtGCCGCCCCTCTG 

rs3735901-C>T* CAGAGGGGCGGCaGGGGGCCCCCCAACCCACCTG 

rs6781790-653-Fa CCGTCAAATAAAAAACCACAAGG 

rs6781790-653-Ra GGCCACATCAGCTTTGTCTCTC 

rs6781790-T>C* CTGAGGGcGCTGTTGATGGGCAGCGCGGCGCG 

rs6781790-T>C* ATCAACAGCgCCCTCAGCTACAGGTAGCAGAGA 

rs7599054-544-Fa TCTTTCTTGATGGCACCTTCTGA 

rs7599054-544-Ra TGGCAATAGCCCAAAGTATAACAA 

rs7599054-G>A* ACTAGGGGaCAATATCCATTAATAACAGATCCCTGTC 

rs7599054-G>A* GGATATTGtCCCCTAGTGGAAAATTGACAGGA 

rs11136093-488-Fa GAATGGGGAAGCCCGTCAA 

rs11136093-488-Ra CCAGGTTGGAGCAGATGGGA 

rs11136093-C>G* TCACCTCTGGGCTGGgGGCGGCCCACCCTGCCCC 

rs11136093-C>G* CcCCAGCCCAGAGGTGACAGCAGTGTGTTGAG 

rs11575895-493-Fa CCGCAACGACACAAAGACTCC 

rs11575895-493-Ra ACGGCGAGGCAGATTTCG 

rs11575895-A>G* TgGTGGCCGGAGGAGAAGGCTCCCGCGGAGGC 

rs11575895-A>G* TTCTCCTCCGGCCACcAGTGGGCGCGCGCGAGCG 

rs16833689-575-Fa TGCTCCATCGTCTCCTACCACT 

rs16833689-575-Ra GAATTGCCAAGACTCTGAGATGAA 

rs16833689-T>C* TTTCCTTCTCCTCACcGCCGGGAAGCGGCCATTG 

rs16833689-T>C* CgGTGAGGAGAAGGAAAGCTTCCTTGTTCAAG 

rs17665188-675-Fa GTGGCGTTTCTAATTGCCTTTC 

rs17665188-675-Ra GGTCTTGCTATATGACCCAAGCTAG 

rs17665188-T>C* GATTTGGAcTGCTTACCGCACAGCCTGCTGTA 

rs17665188-T>C* GGTAAGCAgTCCAAATCCTAGCAGGAGAATGG 

rs55787105-505-Fa AATCCTCGTCTCCCAGGTAACAC 

rs55787105-505-Ra GACCTGAAGTCTAAGTCTGGTGAGC 

rs55787105-G>A* AAGCTGGCTCTaAGCCACAGGCCTGGCTGTGA 

rs55787105-G>A* TGGCTtAGAGCCAGCTTTGGCATTGCTGCCTG 

rs62061727-507-Fa GTTTGTTGTCCTTTGGATGCTTCT 

rs62061727-507-Ra GAAAGTAGTGGGGAGGGGGTAAT 

rs62061727-G>T GTCACAGAtCAGGAACAGCCACTCTCCAGTGT 

rs62061727-G>T* TGTTCCTGaTCTGTGACTTGGTCCTCGACGCT 

rs62061809-560-Fa TTTTCAGGGTAAGAGTTAGGGTCAC 
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rs62061809-560-Ra AGCAGTGGCACGATCTCGAC 

rs62061809-T>C* ATTTAGTCAGCcGGGCACGGTGGCTCAGGCCT 

rs62061809-T>C* TGCCCgGCTGACTAAATTGTTATTCTTATCTAATACATAC 

rs62064663-747-Fa GGTCGCTGGGAAACATAGAGG 

rs62064663-747-Ra GCATGGTGGCTCACACCTGTA 

rs62064663-T>G* TTTGAAAGCCTgGGGGCGGGGGGTGCAATATT 

rs62064663-T>G* GCCCCcAGGCTTTCAAAGCCCCACTGCTCAGG 

rs117629202-376-Fa TTCTGCAAGCGCGAAATC 

rs117629202-376-Ra ACTCTGGACACGGTTTATTGC 

rs117629202-C>A* CAGGGCGaCCGACCCATGCGGGCCGTTTCGCT 

rs117629202-C>A* ATGGGTCGGtCGCCCTGGGATCTCGCGTGCAG 

rs143191191-414-Fa CTTCCTCCCGACAGGTATACACA 

rs143191191-414-Ra GAGAGCAAGCTGGATGGTTCC 

rs143191191-A>/* TACCAAGCACCTGATGATAACTTGGCTTCCTG 

rs143191191-A>/* CATCAGGTGCTTGGTAATATAAACCAGAGCCC 

rs145273500-434-Fa CTTCTTCCCAGGATGACAGCA 

rs145273500-434-Ra TAGCCAACTCTATTCTGCGGTCT 

rs145273500-T>C* AGCTGAAGcGTGTCATATCCAAGTCATGTCCTTAAC 

rs145273500-T>C* TATGACACgCTTCAGCTCTCGTATTGGCTAGAA 

rs559943616-405-Fa CCCCTAACTCACCAAGCGGA 

rs559943616-405-Ra AACGAGGTCAGGAACCCAGAAG 

rs559943616-G>GGA* AGGCTGGggaGAACTGGGGGCGCCTGCAGGGC 

rs559943616-G>GGA* CCAGTTCcctCCAGCCTCCCAGACCTCGCATC 

Note: aRepresent primers for cloning, *Represent primers for point mutation. 
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Note: CCGG: Age I restriction site; AATT: EcoR I restriction site; CTCGAG: loop; TTTTTG: 
T-terminate. 

 

Table S3. shRNAs used to knockdown of TFs 
Primer name Primer sequence(5'>3') 
Human-CTCF-shRNA

1-F 
CCGGGAAAGATGCGCTCTAAGAAAGCTCGAGCTTTCTTAGAGCGCATCTT

TCTTTTTG 
Human-CTCF-shRNA

1-R 
AATTCAAAAAGAAAGATGCGCTCTAAGAAAGCTCGAGCTTTCTTAGAGCG

CATCTTTC 
Human-SIN3A-shRNA

1-F 
CCGGCCCTGAGTTGTTTAATTGGTTCTCGAGAACCAATTAAACAACTCAG

GGTTTTTG 
Human-SIN3A-shRNA

1-R 
AATTCAAAAACCCTGAGTTGTTTAATTGGTTCTCGAGAACCAATTAAACAA

CTCAGGG 
Human-SMC3-shRNA

1-F 
CCGGGTACTGGTCCTCGTGTTATTTCTCGAGAAATAACACGAGGACCAGT

ACTTTTTG 
Human-SMC3-shRNA

1-R 
AATTCAAAAAGTACTGGTCCTCGTGTTATTTCTCGAGAAATAACACGAGG

ACCAGTAC 
Human-RAD21-shRN

A1-F 
CCGGGCCATTACTTTACCTGAAGAACTCGAGTTCTTCAGGTAAAGTAATG

GCTTTTTG 
Human-RAD21-shRN

A1-R 
AATTCAAAAAGCCATTACTTTACCTGAAGAACTCGAGTTCTTCAGGTAAA

GTAATGGC 
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Table S4. RT-qPCR primers used in this study 

Primer name Primer sequence(5'>3') 

Human-CTCF-qPCR-F TTGTCATGCTCGGTTTACCCA 

Human-CTCF-qPCR-R CAATATAGGAATGCTGCTTTCGC 

Human-RAD21-qPCR-F CTGCTCAGCCTTTGTGGAATAAC 

Human-RAD21-qPCR-R GGTCCTCTCTAGGAACCTCTGGAT 

Human-SMC3-qPCR-F AAAAGAGAAGAGGCAGCAGTCAGA 

Human-SMC3-qPCR-R TCAGTTCCCAGTTCTGCTTTCAA 

Human-SIN3A-qPCR-F TTCTTGTAAACGATTGGGCTCC 

Human-SIN3A-qPCR-R TCCTCAGACCACGAAGGGAAG 

Human-LRRC37A4P-qPCR-F TCACAAAACTCGCTCCGCAT 

Human-LRRC37A4P-qPCR-R TTTATGAGGCTCTTCGCTGCA 

Human-CRHR1-IT1-qPCR-F CATTGGGAAGCTGTACTACGACAA 

Human-CRHR1-IT1-qPCR-R GGACGATGTTGAAAAGGAAGATG 

Human-DND1P1-qPCR-F CAAGTGTTTGGGCATAGGACCT 

Human-DND1P1-qPCR-R GCCGTACAGACACAGCATCCTT 

Human-GPX1-qPCR-F TGCGGGGCAAGGTACTACTTA 

Human-GPX1-qPCR-R CAAACTGGTTGCACGGGAAG 

Human-P4HTM-qPCR-F TGTCGGCTCATCATCCATCTG 

Human-P4HTM-qPCR-R GCTGACCTGCATAGTGCTCA 

Human-WDR6-qPCR-F TGAAACCTTCCACCATAAGCGAT 

Human-WDR6-qPCR-R CATGGTGGTGAGATCCCAGAAA 

Human-MAPT-qPCR-F CCAAGTGTGGCTCATTAGGCA 

Human-MAPT-qPCR-R CCAATCTTCGACTGGACTCTGT 
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Table S6. Identification of 44 TF binding-disrupting SNPs from the 44 PD risk loci 

Index SNP Chr 
Index Functional Functional 

r2 Disrupt TFs 
SNP Position Candidates SNP Position 

rs12497850 3 48748989 rs6781790 49044767 0.906402 SIN3A/REST 

rs12497850 3 48748989 rs9840684 48893780 0.910411 CTCF/RAD21 

rs12637471 3 182762437 rs16833689 182803656 0.699684 CTCF/RAD21 

rs14235 16 31121793 rs8050894 31104509 0.860353 RAD21 

rs143918452 3 52816840 rs145273500 52704972 1 PBX3 

rs143918452 3 52816840 rs141535281 52227274 1 TCF12 

rs143918452 3 52816840 rs140163861 52227289 1 NFIC 

rs143918452 3 52816840 rs74735459 52252996 1 CTCF 

rs143918452 3 52816840 rs146527642 52271779 1 EP300/REST 

rs1474055 2 169110394 rs76179989 169103999 0.990628 CTCF 

rs17649553 17 43994648 rs11575895 43971785 0.994629 CTCF/RAD21/SMC3 

rs17649553 17 43994648 rs17665188 44357351 0.956933 REST 

rs17649553 17 43994648 rs55787105 43853109 0.994629 NFIC 

rs17649553 17 43994648 rs62061727 44017124 0.994629 POLR2A 

rs17649553 17 43994648 rs62061809 44178839 0.989251 TCF12 

rs17649553 17 43994648 rs62064663 44080039 0.989251 CTCF/SMC3 

rs17649553 17 43994648 rs111825734 44019107 0.952478 POLR2A 

rs17649553 17 43994648 rs117629202 44344596 0.790129 CTCF 

rs17649553 17 43994648 rs143191191 44341868 0.978751 USF1/TCF12 

rs17649553 17 43994648 rs559943616 43568280 0.758665 POLR2A/CTCF 

rs17649553 17 43994648 rs17688249 43766754 0.994629 REST 

rs17649553 17 43994648 rs56046792 43797246 0.994629 REST 

rs17649553 17 43994648 rs62054378 43799667 0.994629 REST 

rs17649553 17 43994648 rs2864087 43807063 0.994629 USF1 

rs17649553 17 43994648 rs7350923 43834970 0.994629 NFIC 

rs17649553 17 43994648 rs12150515 44090685 0.989251 POLR2A 

rs17649553 17 43994648 rs62062136 44116312 0.989251 POLR2A 

rs17649553 17 43994648 rs876944 44134391 0.989251 RXRA 

rs17649553 17 43994648 rs62060792 44141955 0.989251 POLR2A 

rs17649553 17 43994648 rs974291 44150480 0.989251 SIN3A 

rs17649553 17 43994648 rs1468240 44196447 0.973245 POLR2A 

rs17649553 17 43994648 rs199442 44820122 0.697656 TCF12 

rs17649553 17 43994648 rs199536 44820425 0.689387 EP300/NFIC 

rs17649553 17 43994648 rs199523 44848517 0.649932 CTCF 

rs199347 7 23293746 rs10270788 23189000 0.629274 POLR2A 
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rs199347 7 23293746 rs858305 23242830 0.791519 POLR2A 

rs2280104 8 22525980 rs3735901 22462374 0.824774 RAD21 

rs2280104 8 22525980 rs11136093 22479988 0.830891 SIN3A/REST 

rs2280104 8 22525980 rs2272718 22457388 0.817831 REST 

rs2280104 8 22525980 rs878051 22483836 0.832149 CTCF 

rs2740594 8 11707174 rs1692821 11699988 0.718 POLR2A 

rs2740594 8 11707174 rs1736082 11703420 0.848016 CTCF/RAD21/SMC3 

rs35749011 1 155135036 rs12752133 155205378 0.860057 POLR2A 

rs6430538 2 135539967 rs7599054 135540546 1 CTCF/RAD21/SMC3 
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Table S7. 15 TF binding-disrupting SNPs for reporter gene assays 
SNP ID Chr Refa Altb Location Nearby Genesc Disrupted TFs 
rs3735901 Chr8 T C 22604861 CCAR2 RAD21 

rs6781790 Chr3 C T 49007334 P4HTM SIN3A/REST 

rs7599054 Chr2 A G 134782976 TMEM163 CTCF/RAD21/SMC3 

rs11136093 Chr8 C G 22622475 CCAR2 SIN3A/REST 

rs11575895 Chr17 A G 45894419 MAPT CTCF/RAD21/SMC3 

rs16833689 Chr3 C T 183085868 MCCC1 CTCF/RAD21 

rs17665188 Chr17 T C 46279985 ARL17B REST 

rs55787105 Chr17 G A 45775743 CRHR1 NFIC 

rs62061727 Chr17 G T 45939758 MAPT POLR2A 

rs62061809 Chr17 T C 46101473 KANSL1 TCF12 

rs62064663 Chr17 T G 46002673 MAPT CTCF/SMC3 

rs117629202 Chr17 C A 46267230 ARL17B CTCF 

rs143191191 Chr17 A - 46264503 ARL17B USF1/TCF12 

rs145273500 Chr3 T C 52670956 PBRM1 PBX3 

rs559943616 Chr17 G GAG 45490915 PLEKHM1 POLR2A/CTCF 

 
Note: a Reference allele, b Alternative allele. c Nearby genes of the TF binding-disrupting SNPs. 
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Table S8. Summary of the reporter gene assays 

If allelic differences at the identified regulatory SNPs affect 
 luciferase activity significantly 

Regulatory SNP id SH-SY5Y SK-N-SH 

rs3735901 Yes Yes 

rs6781790 Yes Yes 

rs7599054 No No 

rs11136093 Yes Yes 

rs11575895 Yes Yes 

rs16833689 No No 

rs17665188 Yes Yes 

rs55787105 Yes Yes 

rs62061727 Yes Yes 

rs62061809 Yes Yes 

rs62064663 Yes Yes 

rs117629202 No No 

rs143191191 Yes Yes 

rs145273500 No No 

rs559943616 Yes Yes 
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Table S14. Identification of differentially expressed genes in the prefrontal cortex of  
PD patients using RNA-Seq 

Gene Symbol P value Q value Log FC 

ENSG00000145020 AMT 0.002149556 0.039000165 -0.600839786 

ENSG00000178149 DALRD3 0.002925021 0.045190621 -0.522787873 

ENSG00000136235 GPNMB 0.002216839 0.039475393 1.123769371 

ENSG00000008853 RHOBTB2 0.000328456 0.01550347 -0.685804226 

These data were from the study of Marshall et al. 
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Figure S1. Reporter gene assays validated the regulatory effect of the identified TF 
binding-disrupting SNPs. N = 8 for the control group, n = 16 per experimental group for SH-SY5Y 
and U251 cells. Two-tailed Student’s t test was used for statistical analyses. *P < 0.05, **P < 0.01, 
***P < 0.001. 
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Figure S2. CTCF, RAD21 and SMC3 knockdown resulted in significant changes of CRHR1-IT1, 
DND1P1, LRRC37A4P, MAPT expression in SH-SY5Y cells, indicating that these genes are 
regulated by the CTCF, RAD21 and SMC3 TFs. Three replicates from three independent biological 
samples were used for statistical analysis, and two-tailed Student’s t test was used to test whether the 
difference reaches significance level (0.05). 
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Figure S3. Boxplots of the eQTL analyses in the LIBD and CMC brain eQTL datasets. Brain 
tissues from the Common Mind Consortium (CMC) (N=467), the Lieber Institute for Brain 
Development (LIBD) brain eQTL (N=412). 
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Figure S4. AMT gene expression in single-cell dataset of developing human neocortex 

(http://solo.bmap.ucla.edu/shiny/webapp/) 

 

 

Figure S5. ARL17A gene expression in single-cell dataset of developing human neocortex 

(http://solo.bmap.ucla.edu/shiny/webapp/) 

 

http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/
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Figure S6. DALRD3 gene expression in single-cell dataset of developing human neocortex 

(http://solo.bmap.ucla.edu/shiny/webapp/) 

 

 

Figure S7. GPX1 gene expression in single-cell dataset of developing human neocortex 

(http://solo.bmap.ucla.edu/shiny/webapp/) 

http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/
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Figure S8. KAT8 gene expression in single-cell dataset of developing human neocortex 

(http://solo.bmap.ucla.edu/shiny/webapp/) 

 

Figure S9. NCKIPSD gene expression in single-cell dataset of developing human neocortex 

(http://solo.bmap.ucla.edu/shiny/webapp/) 

http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/
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Figure S10. NUPL2 gene expression in single-cell dataset of developing human neocortex 

(http://solo.bmap.ucla.edu/shiny/webapp/) 

 

Figure S11. P4HTM gene expression in single-cell dataset of developing human neocortex 

(http://solo.bmap.ucla.edu/shiny/webapp/) 

http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/
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Figure S12. PDLIM2 gene expression in single-cell dataset of developing human neocortex 

(http://solo.bmap.ucla.edu/shiny/webapp/) 

 

Figure S13. STX4 gene expression in single-cell dataset of developing human neocortex 

(http://solo.bmap.ucla.edu/shiny/webapp/) 

http://solo.bmap.ucla.edu/shiny/webapp/
http://solo.bmap.ucla.edu/shiny/webapp/
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Figure S14. WDR6 gene expression in single-cell dataset of developing human neocortex 

(http://solo.bmap.ucla.edu/shiny/webapp/) 

http://solo.bmap.ucla.edu/shiny/webapp/
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