
https://doi.org/10.1007/s12035-021-02448-0

Molecular Mechanism of Neuroprotective Effect of Melatonin 
on Morphine Addiction and Analgesic Tolerance: an Update

Ling‑Yan Su1,2,3 · Qianjin Liu1,2,3 · Lijin Jiao1,2,3 · Yong‑Gang Yao1,2,3,4 

Received: 23 January 2021 / Accepted: 7 June 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Drug addiction is a global health problem and continues to place an enormous financial burden on society. This addiction 
is characterized by drug dependence sensitization and craving. Morphine has been widely used for pain relief, but chronic 
administration of morphine causes analgesic tolerance, hyperalgesia, and addiction, all of which limit its clinical usage. 
Alterations of multiple molecular pathways have been reported to be involved in the development of drug addiction, including 
mitochondrial dysfunction, excessive oxidative stress and nitric oxide stress, and increased levels of apoptosis, autophagy, and 
neuroinflammation. Preclinical and clinical studies have shown that the co-administration of melatonin with morphine leads 
to a reversal of these affected pathways. In addition, murine models have shown that melatonin improves morphine-induced 
analgesic tolerance and addictive behaviors, such as behavioral sensitization, reward effect, and physical dependence. In this 
review, we attempt to summarize the recent findings about the beneficial effect and molecular mechanism of melatonin on 
mitochondrial dysfunction, uncontrolled autophagy, and neuroinflammation in morphine addiction and morphine analgesic 
tolerance. We propose that melatonin might be a useful supplement in the treatment opiate abuse.
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Abbreviations
3-MA  3-Methyladenine
ATG5  Autophagy related 5
ATG7  Autophagy related 7
ATP  Adenosine triphosphate
cAMP  Cyclic adenosine monophosphate

CPP  Conditioned place preference
CREB  CAMP response element-binding protein
ERK  Extracellular signal-regulated kinase
MD-2  Myeloid differentiation protein 2
MEG3  Maternally expressed gene 3
mtDNA  Mitochondrial DNA
NLRP3  NOD-like receptor protein 3
NMDA  N-Methyl-d-aspartate
NR1  NMDA subtype 1
NO  Nitric oxide
NOS  Nitric oxide synthase
Per1  Period 1
Per2  Period 2
PINK1  PTEN induced kinase 1
PKC  Protein kinase C
RACK1  Receptor for activated C kinase 1
ROS  Reactive oxygen species
SNC  Substantia nigra compacta
TLR4  Toll-like receptor 4
TNF-α  Tumor necrosis factor-α
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Introduction

Drug addiction is a chronic and relapsing brain disease 
[1, 2] with compulsive drug use, sensitization, tolerance, 
and dependence [2–7]. Drug addiction has become one of 
the biggest public health problems across the world and 
causes an enormous financial burden on society [1, 8]. 
As morphine is a typical opiate, exploring the molecular 
mechanism of morphine’s effect on pain and addiction may 
provide helpful information for opiate withdrawal therapy. 
Morphine is still a gold standard medication for pain man-
agement in the clinical setting, although there are alterna-
tives that can be used such as the synthetic drug, fentanyl. 
Morphine has a high potential for addiction, especially 
under chronic and repeated exposure [9]. Despite there are 
many studies to reveal the cellular and molecular mecha-
nism of drug addiction, the exact mechanism of morphine 
addiction remains unresolved. It has been demonstrated 
that morphine induces brain damage and neuronal toxic-
ity by inducing oxidative stress, nitric oxide (NO) stress, 
mitochondrial dysfunction, apoptosis, autophagy, and 
neuroinflammation [10–14]. A better understanding of 
the underlying mechanism of these deleterious effects will 
undoubtedly be of great benefit to public health and help 
to avoid the side effects of morphine treatment and drug 
addiction.

Melatonin (N-acetyl-5-methoxytryptamine) is the main 
neuroendocrine hormone secreted by the pineal gland. It 
is also produced in many other organs, including the liver, 
kidney, retina, stomach, gut, ovary, muscle, spleen, thy-
mus, heart, intestine, and a variety of cells such as bone 
marrow cells, lymphocytes, and epithelial cells of mam-
mals [15, 16]. Moreover, melatonin is widely available in 
many types of foods, such as fungi, plant products, eggs, 
and fishes [16]. Rich sources of melatonin are essential for 
the maintenance of normal biological functions, including 
antioxidant, antidiabetic, anti-inflammatory, anti-obesity, 
immunity booster, neuroprotective, and cardiovascular 
protective, anti-cancer, and anti-aging activities [17]. 
Initially, melatonin was described as a free-radical scav-
enger [18]. Melatonin can easily cross the blood–brain 
barrier and plays a major role in a variety of neuropro-
tective functions such as regulation of circadian rhythms, 
anti-nociception, anti-apoptotic, anti-autophagy, anti-
inflammatory, and neuronal protection [19–22]. Emerg-
ing lines of evidence have suggested that melatonin can 
reverse morphine-induced conditioned place preference 
(CPP) [23], behavioral sensitization [10], and analgesic 
tolerance in mouse models [10, 24, 25].

When compared to healthy people, most drug abusers 
suffer disordered sleep patterns [26, 27]. Many studies 
have shown that melatonin supplementation improves the 

quality of sleep [28–31], although there is a conflicting 
study showing that administration of melatonin was no 
different from placebo in decreasing sleep problems in a 
cohort of alcohol abuser after 4 weeks of treatment [32]. 
There have been several studies that have evaluated the 
effects of melatonin supplementation on patients with drug 
addiction [32]. Most recently, Hemati et al. summarized 
some of these related studies about the role of melatonin 
to counteract the deleterious effect of morphine and advo-
cated the co-use of melatonin and morphine [33].

In this review paper, we aim to summarize the literature 
regarding the molecular mechanism of melatonin’s benefi-
cial effects on morphine addiction and morphine analge-
sic tolerance, especially with reference to our own related 
studies [10, 14]. We believe a detailed overview of the cur-
rent state of knowledge related to the role of melatonin in 
morphine addiction will help with the evaluation of mela-
tonin’s effects on symptoms and the molecular mechanisms 
underlying addiction, as well as the clinical treatment of 
drug abusers.

Changes in Melatonin Level and its Receptor 
Expression with Morphine Treatment

Acute administration of morphine resulted in a dose-
dependent increase in the melatonin levels in rats [34] and 
bovine pinealocytes [35] when compared to the respective 
controls. Our previous study showed that drug abusers had 
a significantly lower levels of serum melatonin compared 
with healthy individuals, suggesting a downregulation of 
melatonin production by opioids [10]. Morphine adminis-
tration also significantly decreased in the levels of plasma 
melatonin in rats [36] and pigs [37] exposed to constant 
light. Moreover, chronic morphine-tolerant rats had reduced 
expression level of the melatonin receptor 1A in spinal dor-
sal horn and significantly lower serum melatonin level com-
pared to control animals [38]. Previous studies have also 
shown that melatonin receptor 1A was widely expressed in 
the prefrontal cortex, hippocampus, nucleus accumbens, and 
amygdala that are associated with drug addiction [39, 40]. 
As melatonin exerts its functions largely via the melatonin 
receptors [41, 42], it is possible that melatonin may play a 
neuroprotective role in modulating addictive behaviors.

Dysfunction of the circadian clock has been shown to 
be involved in drug addiction, with Per1 (period circadian 
regulator 1) and Per2 (period circadian regulator 2) being 
decreased in morphine-addicted rats [43, 44]. In contrast, 
clock genes have been found to modulate morphine-induced 
behaviors [45–48]. Mouse PER1 promotes morphine-
induced locomotor sensitization and CPP via histone deacet-
ylase activity [49] and extracellular signal-regulated kinase 
(ERK)–cyclic adenosine monophosphate (cAMP) response 
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element-binding protein (CREB) pathway [47, 50]. Recip-
rocally, mouse PER2 promotes the development of toler-
ance to the analgesic effects of morphine and enhances the 
development of withdrawal symptoms [48]. All together, 
these studies reveal the potential implication of the Per1 and 
Per2 genes and melatonin in modulating various morphine-
induced effects in murine models.

Beneficial Effect of Melatonin 
on the Addictive Symptoms Induced 
by Morphine

Recent evidence suggests that melatonin is a potential antin-
ociceptive adjuvant for use in the management of pain [22]. 
Moreover, melatonin plays an important role in regulating 
morphine action, enhancing the antinociceptive effect of 
morphine, and reversing morphine-induced hyperalgesia 
and tolerance (Table 1) [14, 51–54]. Melatonin attenuates 
repetitive morphine-induced hyperalgesia and tolerance by 
inhibiting protein kinase C (PKC) and N-methyl-d-aspartate 
(NMDA) receptors subtype 1 (NR1) in rats [51] and restores 
morphine antinociceptive effect in morphine-tolerant rats 
by inhibiting microglia activation and HSP27 expression 
[55]. Melatonin reduces morphine-induced hyperalgesia and 
exerts its antinociceptive action by increasing β-endorphin 
release in the substantia nigra compacta (SNC) of rats [56] 
and the hypothalamic arcuate nucleus of mice [57]. Mela-
tonin can prevent morphine-withdrawal-induced hyperalge-
sia and glial reactivity in rats by inhibiting PKC activity 
and cAMP upregulation [53]. Further mechanistic study has 
revealed that the suppression of nitric oxide synthase (NOS) 
activity [52] and antioxidative enzymes [58] and modula-
tion of peripheral benzodiazepine receptors [59] might have 
contributed to the mechanism of melatonin-induced reversal 

of morphine tolerance and dependence. Consistent with this 
beneficial role of melatonin, administration of ramelteon, a 
melatonin receptor agonist, attenuated the physical depend-
ence and the blood levels of cortisol in rats treated with 
morphine [60].

In addition, co-administration of melatonin enhances the 
rewarding properties and proconvulsant effects of morphine 
via a mechanism that may have an involvement of the NO 
pathway in mice [13, 61]. On the contrary, another study 
showed that melatonin reverses the morphine-induced CPP 
through melatonin receptor 1B within the central nervous 
system in mice [23]. In our earlier study, we reported that 
melatonin ameliorated morphine-induced behavioral sensiti-
zation and analgesic tolerance by salvaging reactive oxygen 
species (ROS) and autophagy [10]. On the other hand, we 
have also recently reported that melatonin alleviates mor-
phine analgesic tolerance in mice by decreasing NOD-like 
receptor protein 3 (NLRP3) inflammasome activation [14].

Improvement in Mitochondrial Function 
by Melatonin in Morphine Addiction 
and Analgesic Tolerance

As the center of energy production in eukaryotic cells [62], 
mitochondria have their own genetic material called mito-
chondrial DNA (mtDNA) [63]. Mitochondria play a crucial 
role in various cellular processes, including generation of 
adenosine triphosphate (ATP), ROS, regulation of calcium 
signaling, metabolism, inflammation, cell cycle, apoptosis, 
and mitophagy [64–66]. Normal mitochondrial function is 
important in the neurons [21, 67–69] and mitochondrial 
dysfunction may participate in the process of drug addic-
tion [10] (Table 2). Accumulating evidence has shown that 
the ROS level was increased during morphine addiction and 

Table 1  The effects of melatonin on the addictive symptoms induced by morphine

Animal model Addictive symptoms Pathway Ref

Rat Attenuates hyperalgesia and tolerance Inhibiting PKC and NR1 activation [51]
Rat Restores antinociceptive effect Inhibiting microglia and HSP27 activation [55]
Mouse Reduces hyperalgesia and exerts antinociceptive 

action
Increasing β-endorphin release [57]

Rat Prevent hyperalgesia Inhibiting PKC and cAMP activity [53]
Mouse Reverses tolerance and dependence Suppression of NOS activity [52]
Rat Reverses tolerance and dependence Suppression of antioxidative enzymes [58]
Mouse Reverses tolerance and dependence Modulation of benzodiazepine receptors [59]
Mouse Enhances rewarding properties Involvement of the NO pathway [13]
Mouse Enhances anti- and proconvulsant effect Involvement of the NO pathway [61]
Mouse Reverses conditioned place preference Activation of melatonin receptors 2 [23]
Rat Ameliorates behavioral sensitization Salvaging ROS and autophagy [10]
Mouse Alleviates analgesic tolerance Decreasing NLRP3 inflammasome activation [14]
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tolerance [10, 14, 70]. Morphine-induced ROS are gener-
ated in a concentration- and time-dependent manner in SH-
SY5Y and PC12 cells [10, 70]. Chronic intrathecal admin-
istration of morphine induced excessive generation of ROS 
and causes accumulation of damaged mitochondria in spinal 
cord [71]. Mitochondrial ROS induced by morphine pro-
motes the NLRP3-dependent lysosomal damage and inflam-
masome activation [14, 72]. Chronic morphine treatment 
also results in mitochondrion-dependent apoptosis [73].

The main source of cellular ROS is mitochondrion [72]. 
Chronic morphine treatment also results in mitochondrial 
dysfunction [11]. In our previous study, we found that 
chronic morphine exposure led to a decrease in the mtDNA 
copy number and an increase in mtDNA damage in hip-
pocampal tissues and the peripheral blood of the rat and 
mouse models [10]. Similarly, a decreased mtDNA copy 
number and elevated levels of both mtDNA damage and 
ROS, together with impaired respiratory chain capacity were 
observed in PC12 cells treated with morphine [10]. We also 
found that heroin addicts had a lower mtDNA copy number 
and decreased melatonin in the peripheral blood compared 
to healthy individuals. But additional melatonin blocked the 
ROS elevation, ameliorated the impaired respiratory capac-
ity, and salvaged the increased mitochondrial mass induced 
by morphine in PC12 cells. Importantly, the pretreatment 
with melatonin restored the mtDNA copy number and 
reduced the amount of mtDNA damage in PC12 cells and 
mice in response to morphine treatment [10].

The high level of ROS not only leads to oxidative damage 
of the mtDNA, but also affects energy-dependent neuronal 
function including neurite outgrowth and synaptic plastic-
ity [75, 76]. Melatonin restores the morphological changes 
seen in neurons induced by morphine. Moreover, co-admin-
istration of melatonin with morphine ameliorated morphine-
induced behavioral sensitization and analgesic tolerance in 
mice [10]. Most recently, using the mouse models, we found 
that a treatment with melatonin attenuates established mor-
phine tolerance and facilitates the pain relief by morphine in 
the morphine-tolerant mice [14]. This observation suggested 

that melatonin was involved in morphine tolerance and pain 
relief in our murine models. Further study of the underlying 
mechanism showed that melatonin alleviates morphine anal-
gesic tolerance in mice by decreasing NLRP3 inflammasome 
activation through blocking cathepsin B (CTSB) release and 
oxidative stress [14].

Note that melatonin is produced in mitochondrial matrix, 
which means that neurons have the capacity to synthesize 
melatonin for self-protection [77]. It has been reported that 
the neuroprotective effects of melatonin are mainly medi-
ated by mitochondria and mitochondrial-produced melatonin 
[77, 78]. Therefore, it would be rewarding for future studies 
to determine the mechanism by which melatonin mediates 
neuroprotective effects on morphine addiction and analgesic 
tolerance.

Regulation of the Autophagy Pathway 
by Melatonin in Morphine Addiction 
and Analgesic Tolerance

Autophagy plays an important role in the pathogenesis of 
brain diseases, such as Alzheimer disease [79], Parkinson 
disease [74], and drug addiction [10, 80–83] (Table 3). Pre-
vious study has indicated that autophagy was involved in 
the cell death induced by morphine [80]. Morphinone, an 
oxidative metabolite of morphine, induced autophagy and 
led to non-apoptotic cell death in HL-60 cells, and this effect 
could be reversed by a pretreatment of the autophagy inhibi-
tor 3-methyladenine (3-MA) [84]. The Beclin 1-dependent 
and autophagy related gene 5 (ATG5)-dependent autophagy 
were involved in SH-SY5Y cells being treated with chronic 
morphine, which may contribute to morphine-induced neu-
ronal injury [80]. In addition, chronic treatment with mor-
phine induces cell death, which is increased by autophagy 
inhibition [80]. Activation of autophagy in hippocampal 
cells alleviates the morphine-induced memory impairment 
[81]. A recent study has shown that activation of RACK1 
(receptor for activated C kinase 1)-dependent autophagy 

Table 2  Mitochondrial 
dysfunction in mouse and rat 
tissues and cells treated with 
morphine

Models Effect Tissue or cell Ref

Mouse and rat ↓ mtDNA copy number, ↑ mtDNA damage Hippocampus and periph-
eral blood

[10]

Rat cell ↑ ROS/mtDNA damage, ↓ mtDNA copy number/
respiratory chain capacity

Rat PC12 cells [10]

Heroin addicts ↓ mtDNA copy number, ↑ mtDNA damage Peripheral blood [10]
Human cell ↑ ROS SH-SY5Y cells [80]
Human cell ↑ mitochondria-dependent apoptosis SH-SY5Y cells [73]
Mouse ↑ ROS/mitophagy Spinal cord [71]
Mouse cell ↑ ROS BV2 and microglia [14]
Rat ↑ mitochondria-dependent apoptosis Cortical neuron [11]
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induced by morphine contributed to the maintenance of 
CPP memory in mice [85]. The induction of endoplasmic 
reticulum (ER) stress and subsequent initiation of autophagy 
by morphine ultimately culminated in activation of astro-
cytes [86]. Long non-coding RNA MEG3 (maternally 
expressed gene 3) promotes morphine-induced autophagy 
through modulating the ERK pathway in HT22 cells [87]. 
Morphine treatment facilitated lipopolysaccharide-induced 
autophagy and inhibited autophagolysosomal fusion, lead-
ing to decreased bacterial clearance and increased bacterial 
load [88]. Morphine induced dysfunction of PINK1 (PTEN 
induced kinase 1)/Parkin-mediated mitophagy in spinal cord 
neurons, which is involved in antinociceptive tolerance [71]. 
Intracerebroventricular pretreatment with the autophagy 
inhibitor wortmannin or 3-MA significantly attenuated the 
anti-nociception effects from morphine [82] and aggravated 
morphine-induced memory impairment [81]. In our previous 
study, we also found that intracerebroventricular injections 
of 3-MA prevented the behavioral sensitization, whereas 
induction of autophagy by rapamycin promoted the behav-
ioral sensitization induced by morphine [12].

The available evidence has shown that autophagy plays 
an active role in morphine-induced effect, possibly via 
the induction of ROS and mitochondrial damage [89]. At 
the present time, we have no answers for the question as 
to whether the autophagy induced by morphine has a cell-
specific pattern and what may be the downstream biological 
implication. Chronic morphine treatment causes mitochon-
drial dysfunction and leads to Atg5- and Atg7-dependent 
autophagy in the midbrain dopaminergic neurons, which 
participated in the development of addictive behaviors [10, 
12]. Mice deficient for Atg5 or Atg7 specifically found in 
the dopaminergic neurons impaired the CPP, development 
of behavioral sensitization, and antinociceptive tolerance in 
response to morphine [12]. The total dendritic length and 
dendritic complexity were significantly reduced in mor-
phine-treated dopaminergic neurons relative to untreated 
neurons. These neuronal morphological changes triggered by 
morphine could be reversed by knockdown of Atg5 and Atg7 
in primary neuron or knockout of Atg5 and Atg7 specific for 

dopaminergic neurons in mice [12]. We found that pretreat-
ment with melatonin could protect mitochondrial oxidative 
stress induced by morphine and further prevented autophagy, 
resulting in mtDNA recovery. Furthermore, pretreatment 
with melatonin rescued the neuromorphological changes 
and counteracted the deleterious effects of morphine, such 
as behavioral sensitization and analgesic tolerance [10]. It 
would be rewarding to test whether melatonin can regulate 
autophagy in a cell-specific and tissue-specific pattern, and 
which circuit is heavily affected.

Melatonin Reduces Neuroinflammation 
in Morphine Addiction and Analgesic 
Tolerance

It is known that heroin addicts are prone to many infections 
[90]. Neuroinflammation plays an important role in mor-
phine addiction [91, 92] and antinociceptive tolerance [93, 
94] (Table 4). Early studies found that chronic morphine 
treatment increased the astrocyte and microglial activation 
[95–97]. During neuroinflammation, both astrocytes and 
microglia can release tumor necrosis factor-α (TNF-α). Sev-
eral investigations have revealed that the expression levels of 
TNF-α, interleukin 6 (IL-6), and IL-1β were increased both 
in rodents and patients with morphine tolerance [14, 98, 99]. 
Furthermore, knockdown of IL-1β in the dorsal root gan-
glion prolonged morphine analgesia [98], whereas inhibition 
of microglial P2X4 receptors [100] or TNF-α receptor [101] 
attenuated the morphine tolerance. Morphine paradoxically 
prolonged the neuropathic pain in rats by amplifying spinal 
NLRP3 inflammasome activation [93]. Morphine bound 
to an accessory protein of the toll-like receptor 4 (TLR4) 
and the myeloid differentiation protein 2 (MD-2), thereby 
inducing TLR4 oligomerization and triggering proinflam-
mation [91]. The morphine-evoked neuroinflammation is 
very important for morphine tolerance, which mediated by 
astrocyte activation [96], microglia activation [55], and the 
TLR4-NLRP3 inflammasome [102].

Table 3  Autophagy in 
morphine-addicted mouse or rat 
models and cells with morphine 
treatment

a Cells were treated with morphinone, a derivate of morphine

Model Effect Tissue or cell Ref

Human  cella Autophagy and apoptotic cell death HL-60 cells [84]
Human cell Beclin 1- and ATG5-dependent autophagy SH-SY5Y cells [80]
Human cell RACK1-dependent autophagy SH-SY5Y cells [85]
Mouse cell Autophagy HT22 cells [87]
Mouse PINK1/Parkin-mediated mitophagy Spinal cord [71]
Mouse Atg5- and Atg7-dependent autophagy Midbrain tissue and mid-

brain neuron
[12]

Mouse CTSB-dependent autophagy Spinal cord [82]
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Multiple studies have suggested that melatonin attenu-
ated morphine-induced antinociceptive tolerance [14, 24, 
25] by inhibiting the canonical pathway of ion channels 
[103], the ROS and autophagy [10], the protein kinase C 
(PKC) and N-methyl-d-aspartate receptors activity [51], 
the peripheral GABAergic system [59], astroglia activation 
[53], microglia activation, and HSP27 expression [55]. In 
our recent study, we found that chronic morphine exposure 
induces excessive ROS production and NLRP3 inflamma-
some activation in microglia [14]. Deficiency of Nlrp3 in 
mice blunts morphine-induced analgesic tolerance and 
acetic acid-induced pain. Pretreatment of melatonin blocks 
NLRP3 inflammasome activity by diminishing ROS and 

CTSB release to alleviate morphine analgesic tolerance in 
mice [14]. Therefore, melatonin can be useful as a promis-
ing therapeutic adjuvant for patients under long-term opi-
oid treatment for pain relief by inhibiting morphine-induced 
neuroinflammation.

Melatonin as an Ideal Adjuvant to Morphine 
Treatment for Curing Pain

Morphine has been widely used to relieve pain, but has 
side effects of analgesic tolerance and hyperalgesia in those 
patients given frequent injections [104, 105]. Melatonin has 

Table 4  Neuroinflammation in morphine-addicted rodent models and cell lines

Model Effect Tissue or cell Ref

Mouse Microglia activation Spinal cord [93, 98]
Mouse Microglia activation Cortex [14]
Mouse Astrocyte activation Spinal cord [98]
Rat Microglia activation Spinal cord [55]
Rat Astrocyte activation Spinal cord, posterior cingulate cortex, hippocam-

pus
[97]

Rat Astroglia activation Spinal cord [53]
Mouse cell TLR4 oligomerization BV2 cells [91]
Mouse NLRP3 inflammasome activation Spinal cord [93]
Mouse and human cell NLRP3 inflammasome activation BV2 cells and SH-SY5Y cells [102]
Mouse NLRP3 inflammasome activation Cortex tissue, BV2 cells, microglia cells [14]
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Fig. 1  Cellular biological processes and molecular pathways involved in the beneficial effects of melatonin on morphine-induced addiction and 
analgesic tolerance. Upregulation and downregulation effects are marked with an upwards arrow and a downwards arrow, respectively

4633Molecular Neurobiology  (2021) 58:4628–4638

1 3



different interactions with opioids including enhancement 
of analgesic effects of morphine, reversal of tolerance, and 
dependence to morphine [10, 14, 55]. It is an interesting 
point to note that the combination of melatonin with mor-
phine was more effective than the monotherapy of using 
morphine alone. Our recent study indicated that melatonin 
combined with a low dose of morphine (1 mg/kg) had a bet-
ter analgesic effect than morphine alone in a murine pain 
model induced by acetic acid [14]. Melatonin administration 
was associated with a significant decrease in total morphine 
analgesia consumption for controlling the pain in patients 
with bilateral multiple fracture ribs [106] and in patients 
undergoing abdominal hysterectomy [107]. Therefore, mela-
tonin may be a perfect and ideal adjuvant to treatment when 
morphine is needed to treat acute and chronic pain. Focused 
clinical trial for this proposal should be carried out to clarify 
the exact role of a combination of melatonin with morphine 
in curing pain.

Conclusion

Addiction, tolerance, and the associated hyperalgesia 
induced by long-term morphine administration substantially 
restrict the clinical use of morphine in the treatment of pain. 
An increasing amount of evidence suggests that melatonin 
has a profound influence on morphine addiction. There are 
many beneficial effects from the use of melatonin and they 
mainly work against the mitochondrial dysfunction, abnor-
mal autophagy, and neuroinflammation that are all features 
associated with morphine addiction and morphine analge-
sic tolerance (Fig. 1). In addition, melatonin improves the 
behavioral sensitization, analgesic tolerance, reward effect, 
and physical dependence in morphine-addicted rodents. 
Moreover, preclinical studies shown that melatonin may be 
a perfect and ideal adjuvant to the treatment with morphine 
against acute and chronic pain. Our increasing knowledge 
obtained from these reported cellular assays and animal 
model studies [10, 14, 23, 33, 51, 55–57, 61] indicate the 
need for clinical trials of melatonin in preventing the delete-
rious effects of long-term morphine exposure.
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