Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Short communication

mtDNA sequence diversity of Hazara ethnic group from Pakistan

Allah Rakha^{a,b,*}, Fatima^b, Min-Sheng Peng^c, Atif Adan^b, Rui Bi^a, Memona Yasmin^b, Yong-Gang Yao^a

^a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China

^b Department of Forensic Sciences, University of Health Sciences, Lahore, Pakistan

^c State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China

ARTICLE INFO

Article history: Received 12 February 2017 Received in revised form 2 July 2017 Accepted 8 July 2017 Available online 10 July 2017

Keywords: Pakistan Hazara mtDNA Control region Haplogroup Forensic database

ABSTRACT

The present study was undertaken to investigate mitochondrial DNA (mtDNA) control region sequences of Hazaras from Pakistan, so as to generate mtDNA reference database for forensic casework in Pakistan and to analyze phylogenetic relationship of this particular ethnic group with geographically proximal populations. Complete mtDNA control region (nt 16024-576) sequences were generated through Sanger Sequencing for 319 Hazara individuals from Quetta, Baluchistan. The population sample set showed a total of 189 distinct haplotypes, belonging mainly to West Eurasian (51.72%), East & Southeast Asian (29.78%) and South Asian (18.50%) haplogroups. Compared with other populations from Pakistan, the Hazara population had a relatively high haplotype diversity (0.9945) and a lower random match probability (0.0085). The dataset has been incorporated into EMPOP database under accession number EMP00680. The data herein comprises the largest, and likely most thoroughly examined, control region mtDNA dataset from Hazaras of Pakistan.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Hazaras are among few ethnic groups whose origin is obscure. Ancestral home of Hazaras is known as Hazarajat (also referred as Hazaristan), which lies in the central highlands of Afghanistan, among the Koh-i-Baba mountains and the western extremities of the Hindu Kush [1]. Hazaras speak "Hazaragi" (or Aazragi) language [2] and are overwhelmingly Shia Muslims constituting the third largest ethnic group in Afghanistan [3].

According to historical records, several Turk and Mongol tribes constituted the Hazaras ethnically, hence, these are considered of Turko-Mongol origin. The Hazaras identity is believed to be originated after 1221 CE siege of Bamiyan by the Mongol Empire, led by Genghis Khan in pursuit of Jalal ad-Din Mingburnu, the last ruler of the Khwarezmian Empire, and his forces in Afghanistan. It is commonly believed that the soldiers of army left behind by Genghis Khan to guard important places at Hindu Kush, married to the local Tajik women and gave rise to the ancestors of the Hazaras [2]. Few Mongol words in vocabulary of the language of Hazaras supports their Mongol ancestry. Moreover, there are also lines of evidence that some of the remote tribes of Hazaras spoke Mongol language till last century. Their central Asian facial features including sparse beards, high cheekbones and epicanthic eye folds further supports their Mongol origin [2].

Hazaras have faced history of horrendous persecution in Afghanistan. It dates back to 16th century, with Babur from Kabulistan. It is reported that during reign of Emir Abdur Rahman (1880–1901), thousands of Hazaras were killed, expelled and enslaved [4]. Syed Askar Mousavi, a contemporary Hazara writer, claims that half the population of Hazaras was displaced, shifted to neighboring Baluchistan province of Pakistan [5] and Khorasan Province of Iran [4].

Population data on Hazaras from both countries, Afghanistan and Pakistan, have only been restricted to HVS-I [6,7]. Forensic casework mtDNA analysis requires relevant and reliable databases for estimating the probability of a given haplotype in a population [8]. This population study constitutes high quality entire mitochondrial DNA (mtDNA) control region sequence data of 319 randomly selected individuals from population of Hazara, resident of Baluchistan province of Pakistan.

^{*} Corresponding author at: Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China.

E-mail addresses: dnaexpert@me.com, dnatypist@gmail.com (A. Rakha).

2. Materials and methods

Blood samples were collected from 319 Hazara individuals (males n = 185); (females n = 134) residing in Hazara town, an area on the western outskirts of Quetta, city of Baluchistan Province of Pakistan (Fig. 1). All participants were unrelated individuals within at least three generations.

Written informed consent was obtained from all volunteer donors. Samples were fully anonymized. Ethical approval was obtained from Institutional Review Board of University of Health Sciences, Lahore, Pakistan.

2.1. DNA extraction, amplification and sequencing

Genomic DNA was extracted with Axygen[®] AxyPrepTM Blood Genomic DNA Miniprep Kit according to the manufacturer's protocol (Axygen Biosciences; CA, USA). Same set of primers and PCR conditions were used to amplify the entire control region (nt 16024-576) as in our previous study [9]. Purification of PCR products was done with Exonuclease I (TaKaRa) and Shrimp Alkaline Phosphatase (TaKaRa) in 10× Exonuclease I Buffer (TaKaRa) following reaction compositions recommended by the manufacturer. The reaction mixture was incubated at 37 °C for 45 min, followed by enzyme deactivation at 95 °C for 15 min. Sequencing primers from [9] were used to perform capillary electrophoresis using the BigDyeTM Terminator v3.0 Ready Reaction Cycle Sequencing Kit on Applied Biosystems 3730×1 DNA Analyzer (Thermo Fisher Scientific) according to manufacturer's instructions.

2.2. Haplogroup assignment

Forward and reverse sequences were aligned and compared using by SeqManNGen[®] version 12.0 (DNASTAR. Madison, WI). Sequence variations in each sequence were scored relative to the revised Cambridge Reference Sequence (rCRS) [10]. Quality of sequences was examined manually, and two analysts independently annotated deviations from the reference sequence. The recommended nomenclature for mtDNA typing was used for alignment of variants [11]. The haplogroup assignments were carried out using Mitotool (www.mitotool.org) [12,13], Haplogrep (www.haplogrep.uibk.ac.at) [14], and EMMA (www.empop.online) [15] based on PhyloTree build 17 [16]. Haplogroup assignments were re-evaluated by manual inference and conservative most recent common ancestor (MRCA) status was assigned to each sequence to improve the prediction. All 319 sequences generated here were incorporated to EMPOP database under accession number EMP00680 [17]. The sequences are also available on GenBank via accession numbers KX448813-KX449131.

2.3. Data analysis

Indels at nucleotide positions 16193, 309, 315 and 573 were not taken into account for analysis unless otherwise mentioned. The number of haplotypes were calculated by direct counting method. Discrimination capacity was estimated by dividing the number of different haplotypes by total number of individuals [18]. Haplotype diversity was estimated by DnaSP 5.10.1 [19] and random match probability was calculated as sum of squares of observed haplotype frequencies [18].

Based on the distribution patterns [20] and the latest version of the PhyloTree [16], haplogroups were assigned into three ancestry groups: West Eurasian (H, HV, I, J, K, N, R, RO, T, U1a, U5a, U7, U8a, W, X), South Asian (M*, U2, U4), and East Asian (A, B, C, D, F, G) [7,16,21,22]. Molecular diversity indices, pairwise differences between and within populations, haplotype frequencies, analysis of molecular variance (AMOVA) and pairwise F_{ST} values were calculated using DnaSP 5.10.1 [19] and Arlequin 3.5 (Computational and Molecular Population Genetics Lab. Institute of Ecology, and Evolution, University of Berne, Bern, Switzerland) [23]. F_{ST} calculations were made under the Kimura 2-parameter model [24]. In addition, the data was compared with previously published data of other ethnic groups from Pakistan (Kashmiri [9], Pathan [25], Makrani [26]) and worldwide populations (Uzbek, Kazakh, Turkmen, Kyrgyz, Afghan, Russian, Tajik [27], Chinese [28], Thai [29], Vietnamese [30], Laos [31], Kuwaiti [32], Iraqi [33], Egyptian [34], Dubai [35], Ashkenazi Jews [36], Roma [37], Sze 'kely [37], Greeks [38] Moroccan [39] and Iranian [40]) for which entire

Fig. 1. The red dotted area refers to geographic location of sampling from Quetta of Pakistan. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

control region (nt 16024-576) data could be obtained from the literature. Additional comparative analysis was performed with populations for those available sequences consisted of at least nt 16024-16569 range i.e, Afghanistan (Hazara, Pashtun, Tajik, Turkmen, and Uzbek [7]), China (Kazakh [41] and Mongol [42]), Iran (Iranian [40]), Uzbekistan (Uzbek, Kazakh, Turkmen, Kyrgyz, Afghan, Russian, Tajik [27]), Pakistan (Kashmiri [9], Pathan [25], Makrani [26], Baluch (EU565791-EU565815) and Brahui (EU565766-EU565790)). In order to have uniformity and nonarbitrary comparative analysis for the published data, consistent treatment of selecting base on the basis of phylogenetic weightage was applied for the sequence heteroplasmic positions. Pairwise F_{ST} matrix was imported into R statistical package (http://www.Rproject.org/) for plotting heatmap (ComplexHeatmap) and principal components analysis (FactoMineR). This study followed the requirements of this journal [43,44] and the ISFG recommendations for forensic population data publication [43].

3. Results and discussion

To establish reference database for mtDNA applications in forensic, here we present a high quality mtDNA control region sequences dataset of 319 Hazara individuals sampled from Baluchistan Province of Pakistan. mtDNA haplotypes of 319 individuals are given in Table S1. Data showed higher haplotype diversity (0.9945) for Hazaras as compared to Makrani (0.9905) [26] but lower than Kashmiri (0.9977) and Pathan populations [25]. Further, data showed lower random match probability (0.0085) among Hazaras as compared to Makrani population, while a higher value than Kashmiri and Pathan populations (Table 1). Point heteroplasmies were identified in two individuals at two different positions (16230R and 16256Y).

3.1. Haplogroup information

A total of 189 distinct haplotypes were observed in all 319 individuals (Table S2). The most common haplotype among all was shared by 9 individuals (2.82%). Out of 189 haplotypes, 124 were unique while 65 were shared by 2-9 individuals. All these haplotypes were assigned to 156 different haplogroups/subhaplogroups based on PhyloTree Build 17 [16]. The haplogroups were mainly assigned into three continental groups, namely West Eurasian (51.72%), East & Southeast Asian (29.78%) and South Asian (18.50%) [7,16,21,22]. The most frequent haplogroups were H (14.11%), K (14.73%), D (9.72%) and HV (9.40%). Hazaras had higher percentage of East and South East Asian haplogroups among all other Pakistani populations (Fig. S1). Phylogeographical crosscomparison of mtDNA and Y-chromosomal data from Hazara had already showed that male descendants of Mongols were accompanied by women of East Asian ancestry while settling through Central Asia [6]. Our results indicate that the Hazara are characterized by relatively high frequencies of West Eurasian mtDNAs which are virtually fewer or otherwise absent in bordering West Asian populations.

3.2. Pairwise F_{ST} comparisons and population structure

Comparison between different Pakistani populations (Kashmiri [9], Pathan [25] and Makrani [26]) on the basis of pairwise F_{ST} values using complete mtDNA control region sequences showed the highest distance between Hazara and Makrani followed by Hazara and Pathan populations (Table 2). Analysis of Molecular Variance (AMOVA) showed that 97.95% of the variance was within populations and 2.05% of the variance represented among Pakistani populations (Table S3).

Hazara control region (nt 16024-576) sequence data was compared with regional populations (Uzbek, Kazakh, Turkmen, Kyrgyz, Afghan, Russian, Tajik [27], Chinese [28], Thai [29], Vietnamese [30], Laos [31], Kuwaiti [32], Iraqi [33], Egyptian [34], Dubai [35], Ashkenazi Jews [36], Roma [37] Sze 'kely [37], Greeks [38] Moroccan [39] and Iranian [40]). AMOVA was used to test for significant variation in the mtDNA distribution among regional and global populations. 95.83% of the variance observed within these populations was attributable to differences within populations, and 4.17% of the variance represent differences among populations (Table S4). Heatmap matrix (Fig. S2) and corresponding pairwise *F*_{ST} values (Table S5) showed that Hazaras, along with other populations of northern areas of Pakistan (i.e. Kashmiri and Pathan), were clustered more closely to Central Asian Turkmen, Uzbek, Kazakh and Tajik populations. Similar results were obtained through Principal Component Analysis (PCA) (Fig. S3). These results supported the fact about Hazaras having their roots in Afghanistan that shares a long common history with Central Asian [45]. More than 2000 km of joint borders unite Afghanistan with Turkmenistan, Tajikistan and Uzbekistan and their multifaceted links might have influenced the mtDNA diversity of Hazaras [45]. It can also be noticed that Afghan and Russian from Uzbekistan [27] do not cluster with rest of the surrounding Central Asian populations including Hazara (Fig. S3). One potential reason could be relatively smaller sample size studied for these two populations.

In order to include available sequences (nt 16024–16569) from Afghanistan (Hazara, Pashtun, Tajik, Turkmen, and Uzbek [7]), an additional comparative analysis was performed by trimming the sequence data from China (Kazakh [41] and Mongol [42]), Iran (Iranian [40]), Uzbekistan (Uzbek, Kazakh, Turkmen, Kyrgyz,

Table 2

Pairwise $F_{\rm ST}$ distances of mtDNA control region sequences among different ethnic groups of Pakistan.

	Kashmiri [9]	Hazara	Makrani [26]	Pathan [25]
Kashmiri	*	0.012	0.031	0.014
Hazara	0.000	*	0.035	0.024
Makrani	0.000	0.000	*	0.032
Pathan	0.000	0.000	0.000	*

Pairwise F_{ST} values (above diagonal) and associated P-values (below diagonal).

Table 1

Forensic parameters and diversity indices of mtDNA control region sequences from Pakistani ethnic groups.

	Hazara	Kashmiri [9]	Pathan [25]	Makrani [26]
No. of Samples	319	317	230	99
No. of Haplotypes	189	251	192	71
No. of Unique haplotypes	124	201	128	54
No. of Polymorphic sites including indels	217	230	215	142
Discrimination Capacity	0.5925	0.7918	0.8348	0.7172
Random Match Probability	0.0085	0.0054	0.0066	0.0195
Haplotype Diversity (Hd)	0.9945	0.9977	0.9978	0.9905
Average Number of Pairwise differences	10.431	10.447	11.144	12.110

Afghan, Russian, Tajik [27]) and Pakistan (Pathan [25], Kashmiri [9], Makrani [26], Baluch (EU565791-EU565815) and Brahui (EU565766-EU565790)). PCA illustrated that Hazaras of Pakistan are more closely related to the Hazaras of Afghanistan while showed comparatively distal clustering with Mongols but in same quadrate (Fig. S4).

Comparative analysis of shared haplotypes of different populations was performed. Although number of shared haplotypes strongly depends on sample size, however, Hazaras shared more haplotypes with Tajiks of Afghanistan as compare to Tajiks from Uzbekistan (Table S6). These findings did not correspond to the historical claim of partial Tajik origin of Hazaras [2].

4. Conclusion

This is the first report of a reasonably sized forensic database from Hazaras including entire mtDNA control region sequences. The Hazaras are genetically found to be heterogeneous and show a higher similarity to the Central Asian populations as compared to Western Asian populations.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

We would like to thank all volunteers for providing their samples used in this study. We acknowledge Muhammad Raza Wakil for his support in sampling, Muhammad Jawad, Saadia Noreen, Li-Li Kong, Lu-Xiu Yang and Ammar Sabir Cheema for technical assistance, and Hansi Weissensteiner (HAPLOGREP, Medical University Innsbruck, Austria) for haplogroup assignments. This project was supported by the President's International Fellowship Initiative (PIFI) Program of the Chinese Academy of Sciences and the National Natural Science Foundation of China (30925021). M.-S.P. thanks the Youth Innovation Promotion Association, Chinese Academy of Sciences, for its support.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j. fsigen.2017.07.004.

References

- Wikipedia, Hazarajat. <<u>https://en.wikipedia.org/wiki/Hazarajat</u>>, 2007 (accessed September 2016.2016).
- [2] B. Campbell, Disappearing people? Indigenous groups and ethnic minorities in South and Central Asia, in: Brower Brower, Barbara Rose Johnston (Eds.), International Mountain Society, California, 2007.
- [3] L. Dupree, AFGHANISTAN iv. Ethnography, Encyclopaedia Iranica, 2011, pp. 495–501.
- [4] A. Monsutti, HAZARA ii. HISTORY. http://www.iranicaonline.org/articles/hazara-2, 2003 (accessed 7 December 2016.2016).
- [5] I. Yusuf, Who Are the Hazara, the Express Tribune, 2011.
- [6] L. Quintana-Murci, R. Chaix, R.S. Wells, D.M. Behar, H. Sayar, R. Scozzari, C. Rengo, N. Al-Zahery, O. Semino, A.S. Santachiara-Benerecetti, A. Coppa, Q. Ayub, A. Mohyuddin, C. Tyler-Smith, S. Qasim Mehdi, A. Torroni, K. McElreavey, Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor, Am. J. Hum. Genet. 74 (5) (2004) 827–845.
- [7] J. Di Cristofaro, E. Pennarun, S. Mazieres, N.M. Myres, A.A. Lin, S.A. Temori, M. Metspalu, E. Metspalu, M. Witzel, R.J. King, P.A. Underhill, R. Villems, J. Chiaroni, Afghan Hindu Kush: where Eurasian sub-continent gene flows converge, PLoS One 8 (10) (2013) e76748.
- [8] W. Parson, A. Brandstatter, A. Alonso, N. Brandt, B. Brinkmann, A. Carracedo, D. Corach, O. Froment, I. Furac, T. Grzybowski, K. Hedberg, C. Keyser-Tracqui, T. Kupiec, S. Lutz-Bonengel, B. Mevag, R. Ploski, H. Schmitter, P. Schneider, D. Syndercombe-Court, E. Sorensen, H. Thew, G. Tully, R. Scheithauer, The EDNAP mitochondrial DNA population database (EMPOP) collaborative exercises:

organisation, results and perspectives, Forensic Sci. Int. 139 (2–3) (2004) 215–226.

- [9] A. Rakha, M.S. Peng, R. Bi, J.J. Song, Z. Salahudin, A. Adan, M. Israr, Y.G. Yao, EMPOP-quality mtDNA control region sequences from kashmiri of azad jammu & kashmir Pakistan, forensic science international, Genetics 25 (2016) 125–131.
- [10] R.M. Andrews, I. Kubacka, P.F. Chinnery, R.N. Lightowlers, D.M. Turnbull, N. Howell, Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA, Nat. Genet. 23 (2) (1999) 147.
- [11] W. Parson, L. Gusmao, D.R. Hares, J.A. Irwin, W.R. Mayr, N. Morling, E. Pokorak, M. Prinz, A. Salas, P.M. Schneider, T.J. Parsons, DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing, Forensic science international, Genetics 13 (2014) 134–142.
- [12] L. Fan, Y.G. Yao, MitoTool: a web server for the analysis and retrieval of human mitochondrial DNA sequence variations, Mitochondrion 11 (2) (2011) 351– 356.
- [13] L. Fan, Y.G. Yao, An update to MitoTool: using a new scoring system for faster mtDNA haplogroup determination, Mitochondrion 13 (4) (2013) 360–363.
- [14] H. Weissensteiner, D. Pacher, A. Kloss-Brandstatter, L. Forer, G. Specht, H.J. Bandelt, F. Kronenberg, A. Salas, S. Schonherr, HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing, Nucleic Acids Res. 44 (W1) (2016) W58–63.
- [15] A.W. Rock, A. Dur, M. van Oven, W. Parson, Concept for estimating mitochondrial DNA haplogroups using a maximum likelihood approach (EMMA), Forensic science international, Genetics 7 (6) (2013) 601–609.
- [16] M. van Oven, M. Kayser, Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation, Hum. Mutat. 30 (2) (2009) E386–94.
- [17] W. Parson, A. Dur, EMPOP-a forensic mtDNA database, Forensic science international, Genetics 1 (2) (2007) 88–92.
- [18] F. Chen, C.Y. Yin, X.Q. Qian, H.T. Fan, Y.J. Deng, Y.D. Zhang, H.T. Meng, C.M. Shen, C.H. Yang, R. Jin, B.F. Zhu, P. Xu, Single nucleotide polymorphisms of mitochondrial DNA HVS-I and HVS-II in Chinese Bai ethnic group, Electrophoresis 36 (6) (2015) 930–936.
- [19] J. Rozas, DNA sequence polymorphism analysis using DnaSP, in: D. Posada (Ed.), Bioinformatics for DNA Sequence Analysis, Humana Press, Totowa, NJ, 2009, pp. 337–350.
- [20] P.A. Underhill, T. Kivisild, Use of y chromosome and mitochondrial DNA population structure in tracing human migrations, Annu. Rev. Genet. 41 (2007) 539–564.
- [21] M. Metspalu, T. Kivisild, E. Metspalu, J. Parik, G. Hudjashov, K. Kaldma, P. Serk, M. Karmin, D.M. Behar, M.T. Gilbert, P. Endicott, S. Mastana, S.S. Papiha, K. Skorecki, A. Torroni, R. Villems, Most of the extant mtDNA boundaries in south and southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans, BMC Genet. 5 (2004) 26.
- [22] Y.G. Yao, Q.P. Kong, H.J. Bandelt, T. Kivisild, Y.P. Zhang, Phylogeographic differentiation of mitochondrial DNA in han chinese, Am. J. Hum. Genet. 70 (3) (2002) 635–651.
- [23] L. Excoffier, H.E. Lischer, Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour. 10 (3) (2010) 564–567.
- [24] M. Kimura, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol. 16 (2) (1980) 111–120.
- [25] A. Rakha, K.J. Shin, J.A. Yoon, N.Y. Kim, M.H. Siddique, I.S. Yang, W.I. Yang, H.Y. Lee, Forensic and genetic characterization of mtDNA from Pathans of Pakistan, Int. J. Legal Med. 125 (6) (2011) 841–848.
- [26] M.H. Siddiqi, T. Akhtar, A. Rakha, G. Abbas, A. Ali, N. Haider, A. Ali, S. Hayat, S. Masooma, J. Ahmad, M.A. Tariq, M. van Oven, F.M. Khan, Genetic characterization of the Makrani people of Pakistan from mitochondrial DNA control-region data, Legal Med. (Tokyo Japan) 17 (2) (2015) 134–139.
- [27] J.A. Irwin, A. Ikramov, J. Saunier, M. Bodner, S. Amory, A. Rock, J. O'Callaghan, A. Nuritdinov, S. Atakhodjaev, R. Mukhamedov, W. Parson, T.J. Parsons, The mtDNA composition of Uzbekistan: a microcosm of Central Asian patterns, Int. J. Legal Med. 124 (3) (2010) 195–204.
- [28] J.A. Irwin, J.L. Saunier, P. Beh, K.M. Strouss, C.D. Paintner, T.J. Parsons, Mitochondrial DNA control region variation in a population sample from Hong Kong, China, Forensic science international, Genetics 3 (4) (2009) e119–125.
- [29] B. Zimmermann, M. Bodner, S. Amory, L. Fendt, A. Rock, D. Horst, B. Horst, T. Sanguansermsri, W. Parson, A. Brandstatter, Forensic and phylogeographic characterization of mtDNA lineages from northern Thailand (Chiang Mai), Int. J. Legal Med. 123 (6) (2009) 495–501.
- [30] J.A. Irwin, J.L. Saunier, K.M. Strouss, T.M. Diegoli, K.A. Sturk, J.E. O'Callaghan, C. D. Paintner, C. Hohoff, B. Brinkmann, T.J. Parsons, Mitochondrial control region sequences from a Vietnamese population sample, Int. J. Legal Med. 122 (3) (2008) 257–259.
- [31] M. Bodner, B. Zimmermann, A. Rock, A. Kloss-Brandstatter, D. Horst, B. Horst, S. Sengchanh, T. Sanguansermsri, J. Horst, T. Kramer, P.M. Schneider, W. Parson, Southeast Asian diversity: first insights into the complex mtDNA structure of Laos, BMC Evol. Biol. 11 (2011) 49.
- [32] M. Scheible, M. Alenizi, K. Sturk-Andreaggi, M.D. Coble, S. Ismael, J.A. Irwin, Mitochondrial DNA control region variation in a Kuwaiti population sample: forensic science international, Genetics 5 (4) (2011) e112–3.
- [33] N. Al-Zahery, J. Saunier, K. Ellingson, W. Parson, T.J. Parsons, J.A. Irwin, Characterization of mitochondrial DNA control region lineages in Iraq, Int. J. Legal Med. 127 (2) (2013) 373–375.

- [34] J.L. Saunier, J.A. Irwin, K.M. Strouss, H. Ragab, K.A. Sturk, T.J. Parsons, Mitochondrial control region sequences from an Egyptian population sample: forensic science international, Genetics 3 (3) (2009) e97–103.
- [35] F. Alshamali, A. Brandstatter, B. Zimmermann, W. Parson, Mitochondrial DNA control region variation in dubai, United Arab Emirates, F orensic science international, Genetics 2 (1) (2008) e9–10.
- [36] A. Brandstatter, B. Egyed, B. Zimmermann, A. Tordai, Z. Padar, W. Parson, Mitochondrial DNA control region variation in Ashkenazi Jews from Hungary: forensic science international, Genetics 2 (1) (2008) e4–6.
- [37] B. Egyed, A. Brandstatter, J.A. Irwin, Z. Padar, T.J. Parsons, W. Parson, Mitochondrial control region sequence variations in the Hungarian population: analysis of population samples from Hungary and from Transylvania (Romania), Forensic science international, Genetics 1 (2) (2007) 158–162.
- [38] J. Irwin, J. Saunier, K. Strouss, C. Paintner, T. Diegoli, K. Sturk, L. Kovatsi, A. Brandstatter, M.A. Cariolou, W. Parson, T.J. Parsons, Mitochondrial control region sequences from northern Greece and Greek Cypriots, Int. J. Legal Med. 122 (1) (2008) 87–89.
- [39] R. Aboukhalid, K. Sturk-Andreaggi, M. Bouabdellah, D. Squalli, J.A. Irwin, S. Amzazi, Mitochondrial DNA control region variation from samples of the Moroccan population, Int. J. Legal Med. 127 (4) (2013) 757–759.

- [40] M. Derenko, B. Malyarchuk, A. Bahmanimehr, G. Denisova, M. Perkova, S. Farjadian, L. Yepiskoposyan, Complete mitochondrial DNA diversity in iranians, PLoS One 8 (11) (2013) e80673.
- [41] W. Shan, Z. Ren, W. Wu, H. Hao, A. Abulimiti, K. Chen, F. Zhang, Z. Ma, X. Zheng, Maternal and paternal diversity in Xinjiang Kazakh population from China, Genetika 50 (11) (2014) 1374–1385.
- [42] B. Cheng, W. Tang, L. He, Y. Dong, J. Lu, Y. Lei, H. Yu, J. Zhang, C. Xiao, Genetic imprint of the Mongol: signal from phylogeographic analysis of mitochondrial DNA, J. Hum. Genet. 53 (10) (2008) 905–913.
- [43] A. Carracedo, J.M. Butler, L. Gusmao, A. Linacre, W. Parson, L. Roewer, P.M. Schneider, New guidelines for the publication of genetic population data: forensic science international, Genetics 7 (2) (2013) 217–220.
- [44] A. Carracedo, J.M. Butler, L. Gusmao, A. Linacre, W. Parson, L. Roewer, P.M. Schneider, Update of the guidelines for the publication of genetic population data: forensic science international, Genetics 10 (2014) A1–2.
- [45] A. Vera, L. Marlène, P. Sébastien, The Afghanistan Central. Asia relationship: What role for the EU?, 2013. http://fride.org/publication/1099/the-afghanistan-central-asia-relationship:-what-role-for-the-eu(accessed April 2017).

Figure S1. The matrilineal composition of four Pakistani populations based on complete control region sequences (Hazara (319), Kashmiri (317) [9], Pathan (230) [25] and Makrani (99) [26])

Figure S2. Heatmap matrix of pairwise F_{ST} values for 25 populations including Hazara

Populations	References	No. of samples	Populations	References	No. of samples
Hazara	Present study	319	Chinese	[28]	377
Kashmiri	[9]	317	Thai	[29]	190
Pathan	[25]	230	Vietnamese	[30]	187
Makrani	[26]	99	Laos	[31]	214
Uzbek	[27]	328	Kuwaiti	[32]	381
Turkmen	[27]	249	Iraqi	[33]	182
Tajik	[27]	244	Egyptian	[34]	277
Russian	[27]	151	Dubai	[35]	249
Kyrgyz	[27]	249	Ashkenazi Jews	[36]	173
Kazakh	[27]	256	Roma	[37]	205
Afghan	[27]	98	Greeks	[38]	319
Szekely	[37]	182	Iranian	[40]	352
Moroccan	[39]	509			

Data Sources (mtDNA Complete Control Region):

Kazakh[27] Kyrgyz[27]

5

10

15

0

Individuals factor map (PCA)

Figure S3: Principal component analysis (PCA) based on pairwise F_{st} values defined by complete control region sequences

Dim 1 (53.08%)

Data Sources:

4

-10

Populations	References	No. of samples	Populations	References	No. of samples
Hazara	Present study	319	Chinese	[28]	377
Kashmiri	[9]	317	Thai	[29]	190
Pathan	[25]	230	Vietnamese	[30]	187
Makrani	[26]	99	Laos	[31]	214
Uzbek	[27]	328	Kuwaiti	[32]	381
Turkmen	[27]	249	Iraqi	[33]	182
Tajik	[27]	244	Egyptian	[34]	277
Russian	[27]	151	Dubai	[35]	249
Kyrgyz	[27]	249	Ashkenazi Jews	[36]	173
Kazakh	[27]	256	Roma	[37]	205
Afghan	[27]	98	Greeks	[38]	319
Szekely	[37]	182	Iranian	[40]	352
Moroccan	[39]	509			

-5

Individuals factor map (PCA)

Figure S4: Pr	incipal c	omponent a	analysis (PCA)	based	on pairwise	F _{st} valu	ues defined b	VHVI	sequences
0										

Data	Sources:
------	----------

Populations	References	No. of samples	Populations	References	No. of samples
Hazara	Present study	319	Mongol	[44]	201
Kashmiri	[9]	317	Kazakh	[43]	160
Pathan	[25]	230	Tajik	[7]	146
Makrani	[26]	99	Hazara	[7]	78
Uzbek	[27]	328	Turkmen	[7]	75
Turkmen	[27]	249	Uzbek	[7]	127
Tajik	[27]	244	Baluch*	EU565791-EU565815	25
Russian	[27]	151	Brahui#	EU565766-EU565790	25
Kyrgyz	[27]	249	Iranian	[40]	352
Kazakh	[27]	256	Afghan	[7]	90
Afghan	[27]	98			

Table S1 Samplel HZR001	Mitochondrial DNA c MRCA H14b2a M42a1	ontrol reg Polymor 16093C	gion (160) phisms 197G	24-576) ha	309.1C	s and estim 309.2C	ated hap 315.1C	10groups 524.1A	for Haza	ra ethnic (group fro	m Pakista											
HZR002 HZR003 HZR004 HZR005 HZR006	M43a1 B4c1c1 A+152+16362 G2a+152 F1d	16171G 16183C 16223T 16223T 16183C	162231 16189C 16290T 16227G 16189C	16193.1C 16319A 16278T 16193.1C	16362C 16217C 16362C 16362C	73G 16311C 16519C 73G 16519C	73G 73G 152C 73G	146C 152C 263G	489C 150T 235G 309.1C 249d	195C 263G 315.1C 263G	214G 315.1C 489C 309.1C	263G 523d 523d 315_1C	315.1C 524d 524d 523d	524d									
HZR007 HZR009 HZR010 HZR012	H2a2a H2a2a H1b HV2	16519C 263G 16242T 16217C	263G 315.1C 16356C 16519C	309.1C 263G 73G	309.2C 309.1C 152C	315.1C 315.1C 263G	315.1C	455.1T															
HZR014 HZR015 HZR016 HZR017	H10+(16093) U5a1+@16192 A23 B4b1a3a	16093C 16256T 16183C 16086C	189G 16270T 16189C 16136C	207A 16399G 16223T 16182C	263G 73G 16290T 16183C	309.1C 263G 16319A 16189C	309.2C 315.1C 16362C 16217C	315.1C 73G 16519C	97T 73G	105d 146C	106d 263G	107d 315.1C	108d 408A	109d 499A	110d	150T	152C	200G	235G	263G	315.1C	523d	524d
HZR018 HZR019 HZR020 HZR021	D4p D4c2a H14a D4e5a	16223T 16176T 16256T 16223T	16362C 16223T 16352C 16274A	73G 16245T 16362C 16362C	195C 16362C 263G 73G	198T 16368C 152C	263G 73G 185A	315.1C 195C 263G	489C 263G 309.1C	315.1C 315.1C	489C 489C	573.1C	573.2C										
HZR022 HZR023 HZR025 HZR028	U7 X2 C4a1a4a R2	16294T 16111T 16129A 16051G	16309G 16183C 16150T 16071T	16318T 16189C 16223T 16234T	16519C 16193.1C 16298C 16519C	73G 16223T 16327T 73G	152C 16278T 16519C 150T	153G 16519C 73G 152C	263G 73G 195C 182T	309.1C 153G 249d 263G	315.1C 195C 263G 315.1C	523d 263G 315.1C 524.1A	524d 315.1C 333C 524.2C	489C									
HZR029 HZR030 HZR031 HZR032	A+152+16362 M18a J1d A+152+16362	16223T 16114G 16069T 16223T	16290T 16223T 16126C 16290T	16319A 16318T 16193T 16319A	16362C 16519C 16519C 16362C	16519C 73G 73G 16519C	73G 93G 152C 73G	152C 194T 263G 152C	235G 246C 295T 235G	263G 263G 315.1C 263G	315.1C 296T 316A 315.1C	523d 309.1C 462T 523d	524d 315.1C 489C 524d	489C									
HZR033 HZR034 HZR035 HZR037	X2 M30b M12a1b U7a	16189C 16189C 16172C 16274A	16223T 16223T 16183C 16309G	16278T 16278T 16189C 16318T	16519C 16519C 16209C 16519C	73G 73G 16223T 73G	153G 152C 16234T 151T	195C 195A 16290T 152C	263G 263G 16519C 263G	315.1C 315.1C 73G 315.1C	489C 125C 523d	523d 127C 524d	524d 128T	146C	195C	263G	309.1C	315.1C	489C				
HZR038 HZR039 HZR040 HZR041	H2a2a A+152+16362 U5a2a D4b2b	16519C 16223T 16114A 16223T	263G 16290T 16192T 16362C	309.1C 16319A 16256T 16519C	315.1C 16362C 16270T 73G	513A 16519C 16294T 194T	524.1A 73G 16526A 263G	524.2C 152C 73G 315.1C	573.1C 235G 189G 489C	263G 263G 523d	315.1C 309.1C 524d	523d 315.1C	524d										
HZR042 HZR043 HZR044 HZR045	M9a1a1a D4m2a A16 A16	16223T 16042A 16223T 16223T	16234T 16093C 16290T 16290T	16291T 16214T 16292A 16292A	16316G 16223T 16319A 16319A	16362C 16256T 16362C 16362C	16519C 16362C 73G 73G	73G 12C 152C 152C	263G 73G 199C 199C	309.1C 263G 235G 235G	315.1C 315.1C 263G 263G	489C 489C 298A 298A	309.1C 309.1C	315.1C 315.1C	523d 523d	524d 524d							
HZR046 HZR047 HZR048 HZR049	T2a1b F1b1b M30 H2a2a	16126C 16172C 16223T 16519C	16294T 16183C 16265G 263G	16296T 16189C 16355T 309.1C	16324C 16193.1C 16519C 315.1C	16519C 16232A 73G	73G 16249C 195A	263G 16304C 263G	315.1C 16311C 315.1C	73G 489C	152C 523d	204C 524d	249d	263G	309.1C	315.1C	523d	524d					
HZR050 HZR052 HZR053 HZR054	HV6 H2a1 M10a1a1b E1b1+@152	16172C 16189C 16093C	16227G 16311C 16192T 16129A 16183C	263G 16354T 16193T	16362C 309.1C 263G 16223T	315.1C 309.1C 16311C	309.2C 16357C	315.1C 16497G	73G	146C	263G	309.1C	315.1C	489C	523d	524d	573.1C	573.2C	573.3C				
HZR055 HZR057 HZR058 HZR059 HZR060	U2b C4a2 H13a1b HV1b+152	16051G 16223T 16243C 16067T	16114A 16297C 16519C 16311C	73G 16298C 153G 152C	146C 16327T 200G 263G	263G 16357C 263G 315.1C	309.1C 16519C 309.1C	315.1C 73G 315.1C	152C	249d	263G	315.1C	315.2C	489C									
HZR061 HZR062 HZR063 HZR064	R0a+60.1T C4b8a M8a2+152 C4a1a+195	16126C 16093C 16184T 16093C	16362C 16223T 16223T 16129A	58C 16298C 16293G 16223T	60.1T 16327T 16298C 16298C	64T 16519C 16319A 16327T	152C 73G 73G 16519C	263G 249d 152C 73G	309.1C 263G 189G 195C	309.2C 315.1C 263G 249d	315.1C 489C 309.1C 263G	523d 315.1C 315.1C	524d 489C 489C	523d	524d								
HZR065 HZR066 HZR067 HZR068	W3a1+199 M9a1a1a U2c'd C4a1a+195	16093C 16223T 16051G 16129A	16292T 16234T 16126C 16223T	16519C 16316G 16169T 16298C	73G 16362C 16234T 16327T	189G 73G 16278T 16519C	194T 263G 16519C 73G	195C 315.1C 73G 195C	199C 489C 152C 249d	204C 263G 263G	207A 315.1C 309.1C	263G 315.1C	315.1C 489C										
HZR069 HZR070 HZR071 HZR072	HV14 H2a2a J1b8 K1b1a1+199	16311C 16519C 16069T 16224C	263G 263G 16093C 16311C	309.1C 309.1C 16145A 16319A	315.1C 309.2C 16189C 16463G	480C 315.1C 16193.1C 73G	16261T 152C	16362C 199C	73G 263G	151T 309.1C	152C 315.1C	263G 524.1A	295T 524.2C	309.1C	315.1C	462T	489C						
HZR073 HZR074 HZR075 HZR076	M54 D4+195 B4c1b+16335 R7	16223T 16172C 16093C 16183C	16304C 16223T 16140C 16189C	16519C 16362C 16182C 16193.1C	73G 73G 16183C 16319A	263G 195C 16189C 16362C	309.1C 263G 16217C 73G	315.1C 309.1C 16274A 151T	489C 315.1C 16335G 152C	489C 16519C 240G	73G 263G	150T 309.1C	263G 315.1C	309.1C	315.1C								
HZR077 HZR078 HZR079 HZR080	M9a1a1c G2a+152 M65a+@16311 K2a5	16223T 16223T 16137G 16224C	16234T 16227G 16223T 16311C	16291T 16278T 16289G 16519C	16316G 16362C 16360T 73G	16362C 16519C 16519C 146C	73G 73G 73G 152C	153G 152C 263G 195C	263G 263G 315.1C 263G	309.1C 309.1C 489C 309.1C	315.1C 315.1C 511T 315.1C	489C 325T 324T	489C 430C	523d	524d								
HZR081 HZR082 HZR083 HZR084	A+152+16362 T HV2a HV2	162231 16126C 16217C 16217C	162901 16294T 72C 16519C	16319A 16304C 73G 73G	163551 16519C 152C 152C	16362C 73G 195C 263G	263G 263G 309.1C	73G 315.1C 309.1C 315.1C 200.1C	315.1C 455.1T	2356	263G	315.10	523d	5240									
HZR085 HZR086 HZR087 HZR088	H14a H1e1a4 W6 HV1b+152 HV2	16249C 16243C 16192T 16067T	162561 16311C 16223T 16311C 16519C	16519C 16292T 152C	16352C 204C 16325C 263G	263G 16519C 315.1C 263G	309.1C 73G	309.1C 309.2C 185A	309.2C 315.1C 189G	194T	417A 195C	204C	207A	263G	315.1C								
HZR092 HZR093 HZR094 HZR095	M9a1a1a B4b1a3a C4a2 A+152+16362	16223T 16086C 16223T 16223T	16234T 16136C 16297C 16290T	16316G 16182C 16298C	16362C 16183C 16327T 16355T	73G 16189C 16357C 16362C	121C 16193.1C 16519C	263G 16193.2C 73G 73G	309.1C 16217C 152C	315.1C 16519C 249d 235G	489C 73G 263G 263G	146C 315.1C 315.1C	263G 315.2C	315.1C 489C 524d	408A	499A							
HZR095 HZR096 HZR097 HZR098 HZR099	A+152+10302 J2b1a K1a4c1 A15 I1d5	16069T 16224C 16223T 16069T	16290T 16126C 16246T 16290T 16126C	16193T 16311C 16319A 16193T	163331 16278T 16519C 16362C 162744	16519C 73G 73G 16519C	73G 263G 152C 73G	150T 309.1C 207A 146C	152C 152C 315.1C 235G 152C	235G 235G 497T 309.1C 263G	263G 263G 315.1C 295T	295T 523d	309.1C 524d 315.1C	315.1C	489C	524 14	524 20	574 34	524 40				
HZR100 HZR101 HZR102 HZR103	H2a1 U2e2 A+152+16362 W+194	16354T 16051G 16223T 16223T	152C 16092C 16290T 16292T	263G 16129C 16319A 16519C	315.1C 16153A 16362C 73G	16182C 16519C 189G	16183C 73G 194T	16189C 152C 195C	16261T 235G 204C	16362C 263G 207A	16519C 315.1C 263G	73G 523d 315.1C	151T 524d	152C	200G	217C	263G	315.1C	508G				
HZR104 HZR105 HZR106 HZR108	H1e1a4 D4c2b D4c2b R8a1a3	16243C 16189C 16093C 16292T	16311C 16223T 16172C 16519C	16519C 16245T 16223T 73G	204C 16362C 16245T 195C	263G 73G 16362C 214G	309.1C 263G 73G 263G	315.1C 315.1C 263G 309.1C	489C 315.1C 309.2C	534T 489C 315.1C	534T												
HZR109 HZR110 HZR111 HZR114	T2c1a D4i J1c J1d5	16126C 16223T 16069T 16069T	16287T 16294T 16126C 16126C	16292T 16362C 16259.1A 16193T	16294T 73G 16299G 16274A	16519C 146C 73G 16519C	73G 195C 185A 73G	263G 263G 228A 146C	309.1C 315.1C 263G 152C	315.1C 489C 295T 263G	573.1C 315.1C 295T	573.2C 462T 309.1C	573.3C 489C 315.1C	573.4C 462T	573.5C 489C	524.1A	524.2C	524.3A	524.4C				
HZR115 HZR117 HZR118 HZR119	HV2 H2a2a HV4b H1e1a4	16217C 16519C 16069T 16158T	16519C 263G 263G 16311C	73G 315.1C 309.1C 16519C	152C 315.1C 263G	263G 523d 315.1C	315.1C 524d	455.1T															
HZR120 HZR121 HZR122 HZR123	M5a2a1a HV1b+152 K2a5 D4i	16129A 16067T 16224C 16223T	16223T 16311C 16311C 16294T	16265C 152C 16519C 16362C	16344T 263G 73G 73G	16519C 315.1C 146C 146C	73G 152C 195C	263G 195C 263G	315.1C 263G 315.1C	374G 315.1C 489C	489C 324T	430C											
HZR124 HZR125 HZR126 HZR127	H2a1 U4'9 M30c1 D4+195	16189C 16129A 16166d 16172C	16192T 16311C 16207G 16223T	16354T 16362C 16223T 16362C	263G 16519C 16390A 73G	309.1C 73G 16519C 195C	315.1C 195C 73G 263G	263G 146C 309.1C	315.1C 195A 315.1C	499A 263G 489C	309.1C	315.1C	489C	523d	524d								
HZR128 HZR129 HZR130 HZR131	M54 U9a1 M65a+@16311 M5a2a1a	16223T 16051G 16137G 16129A	16304C 16193T 16223T 16223T	16519C 16278T 16289G 16265C	73G 16357C 16360T 16519C	263G 73G 16519C 73G	309.1C 263G 73G 263G	309.2C 315.1C 263G 315.1C	315.1C 499A 315.1C 489C	489C 489C	567G 511T												
HZR132 HZR133 HZR134 HZR135	UDaZa HV2a H13a1c A+152+16362+16189	16114А 16217С 16244А 16182С	16192T 16256T 16519C 16183C	16256T 72C 152C 16189C	16270T 73G 263G 16223T	16294T 152C 315.1C 16290T	16526A 195C 16319A	/3G 263G 16362C	189G 266C 73G	263G 315.1C 150T	309.1C	315.1C	235G	263G	309.1C	315.1C	523d	524d					
HZR136 HZR138 HZR140 HZR141 H7P1 (2	C5c R30b2 R30b2 J1c2i	16093C 16292T 16189C	16223T 16390A 16193.1C	16145A 16288C 16497G 16292T 161477	16298C 16519C 16497G	10193.1C 16327T 73G 16519C 73C	16518T 152C 73G	16519C 263G 150T 188C	73G 16527T 309.1C 263G 7284	73G 315.1C 309.1C 263C	152C 152C 373G 315.1C 205T	203G 249d 373G 315.40	263G	309.1C	315.1C	489C	-707L						
HZR142 HZR143 HZR144 HZR145	J1C21 R0a+60.1T U9a1 C4a1a+195 U5a2a	160691 16126C 16051G 16093C	16126C 16362C 16193T 16129A 16192T	161471 58C 16278T 16223T	60.1T 16357C 16298C	73G 64T 73G 16311C	152C 263G 16327T	263G 315.1C 16362C	228A 309.1C 499A 16519C 224C	263G 309.2C 73G	315.1C 152C	195C	249d	263G	315.1C	489C							
HZR140 HZR147 HZR148 HZR149 HZR150	HV19 M9a1a1a HV1b+152 U5a2a	16213A 16223T 16067T	161921 16260T 16234T 16311C 16192T	16399G 16316G 152C 16256T	162701 16519C 16362C 263G 16270T	146C 73G 315.1C 16294T	309.1C 263G	309.2C 315.1C	315.1C 489C	2636	309.10	315.10											
HZR150 HZR151 HZRm001 HZRm002 HZRm003	J1b1b D4c2b Y1a+16189 D4c2a	160114A 16069T 16093C 16126C 16176T	16126C 16223T 16189C 16223T	162301 16145A 16245T 16231C 16245T	16261T 16262C 16266T 16362C	16519C 73G 16519C 16568C	73G 263G 73G 73G	263G 309.1C 146C 195C	271T 315.1C 263G 263G	295T 489C 309.1C 315.1C	315.1C 534T 315.1C 489C	462T	489C	512G									
HZRm004 HZRm005 HZRm007 HZRm008	U5a1+@16192 M43a1 B5a HV6	16256T 16171G 16140C 16172C	16270T 16223T 16182C 16311C	16399G 16311C 16183C 195C	73G 16362C 16189C 263G	263G 73G 16193.1C 309.1C	315.1C 263G 16266A 315.1C	315.1C 16519C	489C 73G	210G	263G	309.1C	309.2C	315.1C	391C	523d	524d						
HZRm009 HZRm011 HZRm012 HZRm013	HV2a H2a2a H3b6 D2b	16217C 16519C 16129A 16129A	72C 263G 16146G 16148T	73G 309.1C 16318T 16223T	152C 315.1C 16519C 16271C	195C 513A 73G 16362C	263G 524.1A 152C 73G	315.1C 524.2C 263G 195C	573.1C 309.1C 263G	315.1C 315.1C	523d 489C	524d											
HZRm014 HZRm015 HZRm016 HZRm017	H1o D4c2a M43a1 H2a2a	16355T 16176T 16223T 16519C	150T 16223T 16311C 263G	263G 16245T 16362C 309.1C	309.1C 16362C 16519C 309.2C	309.2C 16368C 73G 315.1C	315.1C 73G 263G	195C 309.1C	263G 315.1C	315.1C 489C	489C												
HZRm018 HZRm019 HZRm020 HZRm021	M9 H2a5b1 H2a2a W6	16223T 16176T 16519C 16147T	16362C 16519C 263G 16185T	73G 249d 309.1C 16192T	263G 263G 309.2C 16223T	309.1C 315.1C 315.1C 16274A	315.1C 16292T	489C 16325C	16519C	73G	189G	194T	195C	204C	207A	263G	309.1C	309.2C	315.1C				
HZRm022 HZRm023 HZRm024 HZRm025	HV1b+152 C5c G2a+152 F1a1a	16067T 16093C 16223T 16108T	16311C 16223T 16227G 16129A	152C 16288C 16274A 16162G	263G 16298C 16278T 16172C	315.1C 16327T 16362C 16304C	16518T 73G 16519C	16519C 152C 73G	16527T 195C 150T	73G 263G 249d	152C 315.1C 263G	249d 489C 309.1C	263G 523d 315.1C	309.1C 524d 523d	315.1C 524d	489C							
HZRm027 HZRm028 HZRm029 HZRm030	HV1b+152 K1a4c1 D4j+(16286) D4h1	16067T 16224C 16223T 16093C	16311C 16246T 16286T 16174T	152C 16311C 16362C 16209C	263G 16519C 73G 16223T	315.1C 73G 263G 16362C	263G 309.1C 73G	309.1C 315.1C 263G	315.1C 489C 315.1C	497T 489C	573.1C	573.2C	573.3C	573.4C	573.5C								
HZRm031 HZRm032 HZRm033 HZRm034	J1c M65a+@16311 A15 T	16069T 16137G 16223T 16126C	16126C 16223T 16290T 16294T	16259.1A 16289G 16319A 16304C	16299G 16360T 16362C 16519C	73G 16519C 73G 73G	185A 73G 152C 263G	228A 263G 207A 309.1C	263G 315.1C 235G 315.1C	295T 489C 309.1C	315.1C 511T 315.1C	462T 523d	489C										
HZRm035 HZRm036 HZRm037 HZRm038	R0a1a A+152+16362 G2a2a C4a1a4a	16126C 16223T 16223T 16129A	16266T 16290T 16227G 16150T	16355T 16319A 16278T 16223T	16362C 16362C 16362C 16298C	44.1C 16519C 73G 16327T	58C 73G 152C 16519C	64T 152C 207A 73G	146C 235G 263G 195C	263G 263G 309.1C 249d	309.1C 315.1C 315.1C 263G	309.2C 523d 489C 315.1C	315.1C 524d 523d 333C	524d 489C									
HZRm039 HZRm041 HZRm042 HZRm043	H11a1 U7a T2b34 C4a1a+195	162781 16318T 16126C 16129A	16293G 16519C 16294T 16223T	16311C 73G 16296T 16298C	16319A 151T 16304C 16327T	16390A 152C 16519C 16519C	16519C 263G 41T 73G	195C 315.1C 73G 195C	263G 523d 263G 249d	309.1C 524d 315.1C 263G	309.2C 319C 309.1C	315.1C 315.1C	489C	2620	200.10	245.40							
HZRm044 HZRm045 HZRm046 HZRm047	M9a1a1a U1a1a1 R2 M5a2a1a	16126C 16223T 16182C 16071T	161471 16234T 16183C 16519C	16163G 16316G 16189C 73G	161861 16362C 16249C 152C	73G 73G 263G 73G	263G 263G 315.1C	315.1C 285T	489C 309.1C	315.1C	385G	523d	524d	573.1C	573.2C	573.3C							
HZRm048 HZRm049 HZRm050 HZRm051 HZRm052	A+152+16362+16189 D4c2b D4c2b D4c2b	16129A 16189C 16189C 16189C 16223T	16223T 16223T 16223T 16223T 16271C	16265C 16290T 16245T 16245T 16362C	16319A 16362C 16362C 16519C	73G 16362C 73G 73G 73G	16519C 263G 263G 263G	73G 315.1C 315.1C 298T	152C 489C 489C 309_1C	235G 534T 534T 315 1C	263G	315.1C	523d	524d									
HZRm052 HZRm053 HZRm054 HZRm055 HZRm056	T2c1a J1d H1e1a4 N9a1	16126C 16069T 16243C 16111T	16292T 16093C 16311C 16129A	16294T 16126C 16519C 16223T	16519C 16519C 16193T 204C 16257A	73G 73G 16239T 263G 16261T	263G 263G 16519C 309.1C 73G	309.1C 73G 309.2C 150T	309.2C 152C 315.1C 263G	315.1C 263G 309.1C	573.1C 295T	573.2C 315.1C	573.3C 462T	573.4C 489C									
HZRm057 HZRm058 HZRm059 HZRm060	M7b1a1 U7a HV6 H1+16189	16129A 16274A 16172C 16183C	16223T 16309G 16311C 16189C	16297C 16318T 263G 16519C	73G 16519C 309.1C 263G	150T 73G 315.1C 309.1C	159C 151T 315.1C	199C 152C	263G 263G	315.1C 315.1C	489C 523d	524d											
HZRm061 HZRm062 HZRm063 HZRm065	JT D4m2a H1e1a4 U4'9	16126C 16042A 16243C 16129A	16181G 16093C 16311C 16311C	16209C 16214T 16519C 16362C	16362C 16223T 204C 16519C	16519C 16256T 263G 73G	73G 16362C 315.1C 195C	263G 73G 263G	309.1C 263G 315.1C	315.1C 315.1C 499A	489C												
HZRm066 HZRm067 HZRm069 HZRm070	D4b1 U5a2a C U5a2a	16223T 16114A 16223T 16114A	16319A 16192T 16298C 16192T	16362C 16256T 16327T 16256T	73G 16270T 16519C 16270T	263G 16294T 73G 16294T	309.1C 16526A 249d 16526A	315.1C 73G 263G 73G	489C 234G 309.1C 189G	523d 263G 315.1C 263G	524d 309.1C 489C 309.1C	309.2C 315.1C	315.1C										
HZRm071 HZRm072 HZRm073 HZRm074	H2a2a M3a1+204 U2b2 B4c1b+16335	263G 16126C 16051G 16093C	315.1C 16223T 16086C 16140C	16519C 16291T 16182C	73G 16305T 16183C	204C 16353T 16189C	263G 73G 16193.1C	309.1C 146C 16217C	315.1C 234G 16274A	482C 263G 16335G	489C 315.1C 16519C	73G	150T	263G	309.1C	309.2C	315.1C						
HZRm075 HZRm076 HZRm077 HZRm078	R0a1a U1a C U2e2	16126C 16182C 16223T 16051G	162661 16183C 16287T 16092C	163551 16189C 16298C 16129C	16362C 16193.1C 16327T 16153A	44.1C 16249C 16519C 16182C	58C 16519C 73G 16183C	641 73G 189G 16189C	146C 263G 249d 16261T	263G 285T 263G 16362C	315.1C 309.1C 309.1C 16519C	309.2C 315.1C 73G	315.1C 489C 151T	152C	200G	217C	263G	309.1C	315.1C	499A	508G		
HZRm079 HZRm080 HZRm081 HZRm082	U2c'd B5b2c H14a	16182C 16051G 16111T 16249C	16183C 16126C 16140C 16256T	16189C 16169T 16183C 16311C	16193.1C 16234T 16189C 16352C	16279C 16278T 16234T 16456A 127C	73G 16519C 16243C 263G 263G	73G 16463G 309.1C	152C 16519C 309.2C	263G 73G 315.1C	309.2C 315.1C 103A 417A	131C	263G	309.1C	309.2C	315.1C	481T	523d	573.4C	573.50			
HZRm084 HZRm085 HZRm086 HZRm087	T1a1'3 H2a2a R0a1a M8a2a	16126C 263G 16126C 16184T	16362C 16147T 315.1C 16266T 16189C	16368C 16163G 16355T	16362C	44.1C	16234T 58C	16278T 64T 736	16294T 146C 152C	16519C 263G 263G	73G 309.1C	152C 309.2C	195C 315.1C	263G	309.1C	315.1C							
HZRm088 HZRm089 HZRm090 HZRm091	M9a1a1a M8a2+152 N1a1a1a1a C4a1a+195	16223T 16184T 16147A 16093C	16234T 16223T 16172C 16129^	16291T 16293G 16189C 16179T	16316G 16298C 16223T 16223T	16362C 16319A 16248T 16298C	16519C 73G 16320T 16327T	73G 152C 16355T 16519C	263G 189G 16519C 73G	309.1C 263G 73G 195C	315.1C 315.1C 152C 249d	489C 489C 199C 263G	204C 309.1C	263G 315.1C	309.1C 489C	315.1C	573.1C	573.2C	573.3C	573.4C	573.5C		
HZRm092 HZRm093 HZRm094 HZRm095	C R0a+60.1T A16 U5a2a	16223T 16126C 16223T 16114A	16298C 16311C 16290T 16192T	16327T 16362C 16292A 16256T	16519C 58C 16319A 16270T	73G 60.1T 16362C 16294T	249d 64T 73G 16526A	263G 152C 152C 73G	309.1C 263G 199C 234G	315.1C 309.1C 235G 263G	489C 309.2C 263G 309.1C	315.1C 298A 315.1C	309.1C	315.1C	523d	524d							
HZRm096 HZRm097 HZRm098 HZRm099	x2 R8a1a1d H1m1 U5a1a1+152	16189C 16172C 16399G 16256T	16223T 16184A 16519C 16270T	16278T 16390A 146C 16399G	16519C 73G 263G 73G	73G 152C 309.1C 152C	153G 195C 315.1C 263G	195C 263G 309.1C	263G 309.1C 315.1C	315.1C 315.1C	0.45												
HZRm100 HZRm101 HZRm102 HZRm103	Z+152 H1e1a4 H2a2a U4b3	16185T 16243C 16519C 16356C	16209C 16311C 263G 16519C	16260T 16519C 309.1C 73G	16298C 204C 315.1C 195C	73G 263G 215G	152C 309.1C 263G	249d 315.1C 309.1C	263G 309.2C	309.1C 315.1C	315.1C 499A	489C	524.2C										
HZRm104 HZRm105 HZRm106 HZRm107	муатата H14a C5c K1a4c1 M54	16249C 16093C 16224C	16256T 16223T 16246T	16316G 16311C 16288C 16311C	16352C 16352C 16298C 16519C	73G 16456A 16327T 73G 263C	203G 263G 16518T 263G 300 4 5	309.1C 309.1C 16519C 309.1C 315.1C	чб9С 309.2C 16527T 315.1C 480C	315.1C 73G 497T	417A 249d	263G	315.1C	489C									
HZRm108 HZRm109 HZRm110 HZRm111 H7Pm1	M5a+@16311 HV2a H2a1 U1a1a	16217C 16189C	16223T 72C 16192T 16195	16289G 73G 16354T 161995	16360T 152C 263G	2030 16519C 195C 309.1C	263G 315.1C 73C	263G 315.1C 1854	315.1C	489C	511T	300 20	315 17	3850	5724	5744							
HZRm112 HZRm113 HZRm114 HZRm115 H7Rm111	U2b1 F1b1+@152 J1b8 H10+(16093)	16051G 16183C 16069T 16092C	16168T 16189C 16093C 189C	16189C 16215G 16145A 207^	16201T 16232A 16189C 263C	16390A 16249C 16261T 309.1C	16T 16304C 16362C 315 1C		146C 16519C 151T	215G 73G 152C	263G 249d 263G	279.1T 263G 295T	315.1C 315.1C 315.1C 309.1C	523d 315.1C	524d 462T	489C							
HZRm116 HZRm117 HZRm118 HZRm119 HZRm120	U1a U5a1 H1e1a4 D4m2a	16182C 16192T 16243C 16047^	16183C 16256T 16311C 1621⊿⊤	16189С 16270Т 16519С 16223Т	16193.1C 16399G 204C 16256T	2 16249C 16519C 263G 16362C	16519C 73G 309.1C 73G	73G 195C 315.1C 263G	263G 198T 315_1C	285T 263G 489C	309.1C 315.1C	315.1C											
HZRm121 HZRm122 HZRm123 HZRm124	HV19 HV6 U1a1a B5a	16213A 16172C 16183C 16140C	16260T 16311C 16185T 16182C	16399G 263G 16189C 16183C	16519C 309.1C 16193d 16189C	146C 315.1C 16249C 16193 1C	309.1C 73G 162664	309.2C 185A 16519C	315.1C 263G 73G	285T 210G	309.1C 263G	315.1C 309.1C	385G 315.10	523d 391C	524d 523d	524d							
HZRm125 HZRm126 HZRm127 HZRm128	U5a2a D4c2b H29 M2a2	16114A 16189C 16519C 16223T	16192T 16223T 263G 16240C	16256T 16245T 309.1C 16274A	16270T 16362C 315.1C 16311C	16294T 73G 573.1C 16319A	16526A 263G 16519C	73G 315.1C 73G	234G 489C 263G	263G 534T 309.1C	309.1C 315.1C	315.1C	489C										
HZRm129 HZRm130 HZRm131 HZRm132	U7a HV14 U5a2a D4c2b	16274A 16311C 16114A 16189C	16309G 16488T 16192T 16223T	16318T 263G 16256T 16245T	16519C 309.1C 16270T 16362C	73G 315.1C 16294T 73G	151T 459d 16526A 263G	152C 480C 73G 315.1C	263G 234G 489C	315.1C 263G 534T	523d 309.1C	524d 315.1C											
HZRm133 HZRm134 HZRm135 HZRm136	B4b1a3a B4b1a+207 HV2a D4m2a	16086C 16136C 16217C 16042A	16136C 16182C 72C 16093C	16182C 16183C 73G 16214T	16183C 16189C 152C 16223T	16189C 16217C 195C 16256T	16193.1C 16519C 263G 16362C	16217C 73G 315.1C 12C	16519C 207A 73G	73G 263G 263G	146C 309.1C 315.1C	263G 309.2C 489C	309.1C 315.1C	309.2C 499A	315.1C	408A	499A	524.1A	524.2C				
HZRm137 HZRm138 HZRm139 HZRm140	C5c M9 B4c1b+16335 R2	16093C 16223T 16093C 16071T	16223T 16357C 16140C 16519C	16288C 16362C 16182C 73G	16298C 73G 16183C 152C	16327T 263G 16189C 263G	16518T 309.1C 16193.1C 315.1C	16519C 309.2C 16217C	16527T 315.1C 16274A	73G 489C 16335G	152C 16519C	249d 73G	263G 150T	309.1C	315.1C 309.1C	489C 309.2C	315.1C						
HZRm141 HZRm149 HZRm150 HZRm151a	M9a1a1a D4b1a1 G2a+152 U8b1b	16223T 16223T 16126C 16183C	16234T 16239T 16223T 16189C	16316G 16242T 16227G 16234T	16362C 16243C 16278T 16324C	73G 16319A 16362C 16519C	263G 16362C 16519C 73G	315.1C 73G 73G 195C	489C 152C 152C 263G	195C 263G 309.1C	263G 309.1C 309.2C	315.1C 315.1C 315.1C	489C 325T	523d 489C	524d 523d	524d							
HZRm152a HZRm151b HZRm152b HZRm153	HVZ J1d M9a1a1a H2a2a	16217C 16069T 16223T 16519C	16519C 16193T 16234T 263G	/3G 16519C 16316G 309.1C	152C 73G 16362C 315.1C	263G 151T 73G	309.1C 152C 263G	315.1C 263G 309.1C	455.1T 295T 315.1C	315.1C 489C	462T	489C											
HZRm154 HZRm155 HZRm156 HZRm157	U2C d U1a1a M9a1a1a F1a1 M2a1a	16183C 16183C 16223T 16129A	т6126С 16185Т 16234Т 16162G	16169T 16189C 16316G 16172C	16234T 16193d 16362C 16304C	16278T 16249C 73G 16519C	10519C 73G 263G 73G 72C	73G 185A 309.1C 146C	152C 263G 315.1C 249d 204C	263G 285T 489C 263G	315.1C 309.1C 315.1C	315.1C 523d	385G	523d	524d	522.1	574'						
HZRm158 HZRm159 HZRm160 HZRm161	MZATA M43a1 HV6 M30e M9a1a1a	16223T 16223T 16172C 16093C	16311C 16311C 16223T 16223T	16362C 263G 16234T	10352C 73G 309.1C 16519C	10519C 263G 315.1C 73G 73C	150T 262C	152C	204C 489C 195A 480C	263G	315.1C	309.2C 489C	523d	44/G	-+69C	523d	JZ4d						
HZRm162 HZRm163 HZRm164 HZRm165 H7Pm1	arara D4h1 H5 U5a1+@16192 U8h1h	.5223 F 16093C 16261T 16256T 16182C	16174T 16304C 16270T 16180C	16209C 263G 16399G	16223T 315.1C 73G 16224	16362C 456T 263G 16334C	2030 73G 315.1C	263G 73C	309.1C	315.1C	489C	573.1C	573.2C	573.3C	573.4C								
HZRm166 HZRm167 HZRm168 HZRm169	U1a M8a2a M12a1b D4e5b	16182C 16184T 16172C	16183C 16183C 16189C 16183C	16192T 16189C 16223T 16193.1C	16193.1C 16293G 16209C	16249C 16298C 16223T	16519C 16319A 16234T 16510C	73G 73G 16290T 73C	263G 152C 16519C 262C	285T 263G 73G	309.1C 309.1C 310C 125C 315.1C	315.1C 309.2C 489C 127C 480C	315.1C 128T	389A 146C	195C	263G	309.1C	315.1C	489C				
HZRm170 HZRm171 HZRm172 HZRm173 H7Pm17	A+152+16362 M9 HV1b+152 HV6	16223T 16223T 16067T 16172C	16290T 16362C 16311C 16311C	16319A 16519C 152C 16362C	16355T 16355T 73G 263G 263C	10302C 16362C 263G 315.1C 309.1C	16519C 309.1C 315.1C	73G 315.1C	152C 489C	235G	263G	315.1C	523d	524d									
HZRm175 HZRm176 HZRm177 HZRm177	M9a1a1c K2a5 D4b1 U7a	16223T 16224C 16223T 16223T 16274^	16234T 16311C 16319A 16300C	16291T 16519C 16362C 16318T	16316G 73G 73G 16510C	16362C 146C 263G 73G	73G 152C 309.1C 151T	153G 195C 315.1C 152C	263G 263G 489C 263G	309.1C 309.1C 523d 315.1C	315.1C 315.1C 524d 523d	489C 324T 524d	430C										
HZRm179 HZRm180 HZRm181 HZRm187	HV6 T2c1a U5a2a C4a1a+195	16172C 16126C 16114A 16093C	16311C 16292T 16192T 16129A	263G 16294T 16256T 16179T	309.1C 16309G 16270T 16223T	315.1C 16320T 16294T 16298C	16519C 16526A 16327T	73G 73G 16519C	263G 234G 73G	315.1C 263G 195C	573.1C 309.1C 249d	573.2C 315.1C 263G	573.3C 309.1C	309.2C	315.1C	489C							
HZRm183 HZRm184 HZRm185 HZRm186	U2e1h H2a1f M9 T2c1a	16051G 16086C 16223T 16126C	16129C 16189C 16362C 16292T	16183C 16193T 73G 16294T	16193.1C 16193.1C 263G 16519C	16362C 16354T 315.1C 73G	73G 263G 489C 263G	217C 309.1C 309.1C	228A 315.1C 315.1C	263G 573.1C	310C 573.2C	340T 573.3C	508G 573.4C	573.5C	573.6C								
HZRm187 HZRm188 HZRm189 HZRm190	N1b1 HV6 H1b C4a1a+195	16145A 16172C 16242T 16129A	16176G 16311C 16356C 16223T	16223T 263G 263G 16298C	16390A 309.1C 309.1C 16327T	16519C 309.2C 309.2C 16519C	73G 315.1C 315.1C 73G	152C	263G 195C	315.1C	523d 263G	524d 315.1C	333C	489C									
HZRm191 HZRm192 HZRm193 HZRm194	U1a1a1 A+152+16362 N1b1 C4a1a+195	16182C 16223T 16145A 16129A	16183C 16290T 16176G 16223T	16189C 16319A 16223T 16298C	16249C 16355T 16390A 16327T	73G 16362C 16519C 16519C	263G 16519C 73G 73G	285T 73G 152C 150T	309.1C 152C 263G 195C	309.2C 235G 309.1C 249d	315.1C 263G 315.1C 263G	385G 315.1C 315.1C	523d 523d 333C	524d 524d 489C	573.1C	573.2C	573.3C	573.4C	573.5C				
1 -	H1e1a4	16243C	16311C	16519C	204C	263G	309.1C	315.1C															

	Number	Percent	Haplogroup	Number	Percent
	10		A : 452 : 46262	10	(%)
А	18	5.6	A+152+16362	10	3.1
			A+152+16362+16189	2	0.6
			A15	2	0.6
			A16	3	0.9
			A23	1	0.3
В	11	3.4	B4b1a+207	1	0.3
			B4b1a3a	3	0.9
			B4c1b+16335	3	0.9
			B4c1c1	1	0.3
			B5a	2	0.6
			B5b2c	1	0.3
С	20	6.3	С	3	0.9
			C4a1a+195	8	2.5
			C4a1a4a	2	0.6
			C4a2	2	0.6
			C4b8a	1	0.3
			C5c	4	1.3
D	31	9.7	D2b	1	0.3
			D4+195	2	0.6
			D4b1	2	0.6
			D4b1a1	1	0.3
			D4b2b	1	0.3
			D4c2a	3	0.9
			D4c2b	7	2.2
			D4e5a	1	0.3
			D4e5b	1	0.3
			D4g2	1	0.3
			D4h1	2	0.6
			D4i	2	0.6
			D4j+16286	1	0.3
			D4l2	1	0.3
			D4m2a	4	1.3
			D4p	1	0.3
F	7	2.2	F1a1	1	0.3
			F1a1a	1	0.3
			F1b1+@152	3	0.9
			F1b1b	1	0.3
			F1d	1	0.3

Table S2. mtDNA haplogroup frequencies of Hazara in Pakistan

G	6	1.9	G2a+152	5	1.6
			G2a2a	1	0.3
н	45	14.1	H1+16189	1	0.3
			H10+16093	2	0.6
			H11a1	1	0.3
			H13a1b	1	0.3
			H13a1c	1	0.3
			H14a	4	1.3
			H14b2a	1	0.3
			H1b	2	0.6
			H1e1a4	8	2.5
			H1m1	1	0.3
			H1o	1	0.3
			H29	1	0.3
			H2a1	4	1.3
			H2a1f	1	0.3
			H2a2a	13	4.1
			H2a5b1	1	0.3
			H3b6	1	0.3
			H5	1	0.3
ΗV	30	9.4	HV14	2	0.6
			HV19	2	0.6
			HV1b+152	7	2.2
			HV2	5	1.6
			HV2a	5	1.6
			HV4b	1	0.3
			HV6	8	2.5
J	14	4.4	J1b1b	1	0.3
			J1b8	3	0.9
			J1c	2	0.6
			J1c2i	1	0.3
			J1d	3	0.9
			J1d5	2	0.6
			J2b1a	1	0.3
			JT	1	0.3
	7	2.2	K1a4c1	3	0.9
			K1b1a1+199	1	0.3
			K2a5	3	0.9
К	47	14.7	M10a1a1b	1	0.3
			M12a1b	2	0.6
			M18a	1	0.3
			M2a1a	1	0.3

			M2a2	1	0.3
			M30	1	0.3
			M30b	1	0.3
			M30c1	1	0.3
			M30e	1	0.3
			M3a1+204	1	0.3
			M43a1	4	1.3
			M54	3	0.9
			M5a2a1a	3	0.9
			M65a+@16311	4	1.3
			M7b1a1	1	0.3
			M8a2+152	2	0.6
			M8a2a	2	0.6
			M9	4	1.3
			M9a1a1a	13	4.1
Ν	4	1.3	N1a1a1a1a	1	0.3
			N1b1	2	0.6
			N9a1	1	0.3
R0	6	1.9	R0a+60.1T	3	0.9
			R0a1a	3	0.9
R0	8	2.5	R2	3	0.9
			R30b2	2	0.6
			R7	1	0.3
			R8a1a1d	1	0.3
			R8a1a3	1	0.3
Т	10	3.1	Т	2	0.6
			T1a1'3	2	0.6
			T2a1b	1	0.3
			T2b34	1	0.3
			T2c1a	4	1.3
U	46	14.4	U1a	3	0.9
			U1a1a	3	0.9
			U1a1a1	3	0.9
			U2b	1	0.3
			U2b1	1	0.3
			U2b2	1	0.3
			U2c'd	3	0.9
			U2e1h	1	0.3
			U2e2	2	0.6
			U4'9	2	0.6
			U4b3	1	0.3
			U5a1	1	0.3

			U5a1+@16192	3	0.9
			U5a1a1+152	1	0.3
			U5a2a	10	3.1
			U7	1	0.3
			U7a	5	1.6
			U8b1b	2	0.6
			U9a1	2	0.6
W	4	1.3	W+194	1	0.3
			W3a1+199	1	0.3
			W6	2	0.6
Х	3	0.9	X2	3	0.9
Υ	1	0.3	Y1a+16189	1	0.3
Z	1	0.3	Z+152	1	0.3

@ corresponds to mutations that are reversions to an ancestral state (back mutations) and are indicated as @ in HaploGrep output

Source of variation	d.f	Sum of Squares	Variance components	Percentage of variation
Among population	3	91.189	0.10937 Va	2.05
Within population	961	5021.488	5.22527 Vb	97.95
Total	964	5112.677	5.33464	

Table S3: Analysis of molecular variance for 4 Pakistani populations based on mtDNA complete control region sequences

Sources:

Populations	References	No. of samples
Kashmiri	[9]	317
Pathan	[25]	230
Makrani	[26]	99
Hazara	Present Study	319

Source of variation	d.f	Sum of Squares	Variance components	Percentage of variation
Among population	26	1579.624	0.22973 Va	4.17
Within population	6531	34490.714	5.28108 Vb	95.83
Total	6557	36070.338	5.51081	

Table S4: Analysis of molecular variance for global populations based on mtDNA complete control region sequence

Data Sources:

Populations	References	No. of samples	Populations	References	No. of samples
Hazara	Present study	319	Chinese	[28]	377
Kashmiri	[9]	317	Thai	[29]	190
Pathan	[25]	230	Vietnamese	[30]	187
Makrani	[26]	99	Laos	[31]	214
Uzbek	[27]	328	Kuwaiti	[32]	381
Turkmen	[27]	249	Iraqi	[33]	182
Tajik	[27]	244	Egyptian	[34]	277
Russian	[27]	151	Dubai	[35]	249
Kyrgyz	[27]	249	Ashkenazi Jews	[36]	173
Kazakh	[27]	256	Roma	[37]	205
Afghan	[27]	98	Greeks	[38]	319
Szekely	[37]	182	Iranian	[40]	352
Moroccan	[39]	509			

Population Pairwise F _{ST}																				
	Afghan [7]	Baluch *	Brahui #	Hazara (Current Study)	Iranian [40]	Kazakh [27]	Kyrgyz [27]	Kashmiri [9]	Kazakh [41]	Makrani [26]	Mongol [44]	Pashtun [27]	Pathan [25]	Russian [27]	Tajik [27]	Turkmen [27]	Tajik [7]	Turkmen [7]	Uzbek [7]	Uzbek [27]
Population Sample Size	90	25	25	319	352	256	249	317	160	99	201	98	230	151	244	249	146	75	127	328
Afghan [7]	0																			
Baluch *	0.05343	0																		
Brahui #	0.03769	0.00431	C)																
Hazara (Current Study)	0.03777	0.02576	0.01563	3 0																
Iranian [40]	0.03302	0.01768	-0.00245	0.02428	0															
Kazakh [27]	0.05245	0.03807	0.02369	0.00433	0.03878	0														
Kyrgyz [27]	0.06399	0.03985	0.02704	0.00916	0.04492	0.00378	0													
Kashmiri [9]	0.04284	0.01283	-0.00033	0.01311	0.01655	0.0226	0.02362	0												
Kazakh [41]	0.08377	0.04888	0.04668	0.01981	0.06454	0.01091	0.01255	0.03793	0											
Makrani [26]	0.05363	0.03813	0.01469	0.03616	0.02858	0.04398	0.0505	0.02951	0.06937	0										
Mongol [42]	0.07762	0.06808	0.05135	0.02103	0.07311	0.01025	0.00691	0.04315	0.02074	0.06639	0									
Pashtun [7]	0.0298	0.00598	0.0013	3 0.00847	0.008	0.02034	0.02654	0.00586	0.04003	0.027	0.04544	0								
Pathan [25]	0.03443	0.00758	-0.00584	0.01609	0.01267	0.02757	0.03211	0.00276	0.04218	0.02886	0.05377	0.00436	0							
Russian [27]	0.04289	0.0439	0.02918	0.03437	0.01028	0.05446	0.06912	0.03858	0.08801	0.05984	0.09745	0.01866	0.03027	0						
Tajik [27]	0.04991	0.05372	0.02468	0.0209	0.0319	0.02618	0.02626	0.03233	0.05168	0.04076	0.03372	0.02437	0.03622	0.0475	0					
Turkmen [27]	0.04205	0.02364	0.00978	0.00706	0.01696	0.00965	0.01269	0.01342	0.02881	0.03561	0.02966	0.00753	0.01617	0.03461	0.02	0				
Tajik [7]	0.02859	0.00908	0.00027	0.00588	0.00787	0.01708	0.02291	0.00572	0.03831	0.02784	0.04176	-0.00153	0.00515	0.01514	0.02147	0.00719	0			
Turkmen [7]	0.0279	0.00908	0.00933	0.00384	0.01591	0.01137	0.01558	0.00816	0.02467	0.0333	0.0328	-0.00167	0.0065	0.02756	0.0225	0.00261	-0.00022	0		
Uzbek [7]	0.03278	0.01209	-0.00301	0.00526	0.00846	0.01219	0.01651	0.0035	0.03207	0.02298	0.03505	0.00084	0.00386	0.02636	0.02324	0.00357	0.00025	0.00002	0	
Uzbek [27]	0.03629	0.02482	0.00559	0.00425	0.01863	0.00539	0.00814	0.01158	0.01922	0.03273	0.02139	0.00876	0.01221	0.03301	0.01717	0.00401	0.00638	0.00336	0.00293	0
F _{ST} p-value																				
	Afghan [7]	Baluch *	Brahui #	Hazara (Current Study)	Iranian [40]	Kazakh [27]	Kyrgyz [27]	Kashmiri [9]	Kazakh [41]	Makrani [26]	Mongol [42]	Pashtun [27]	Pathan [25]	Russian [27]	Tajik [27]	Turkmen [27]	Tajik [7]	Turkmen [7]	Uzbek [7]	Uzbek [27]
Afghan [7]	*																			
Baluch *	0.00000+-0.0000	*																		
Brahui #	0.00781+-0.0024	0.34180+-0.0169	*																	
Hazara (Current Study)	0.00000+-0.0000	0.00098+-0.0010	0.01855+-0.0046	*																
Iranian [40]	0.00000+-0.0000	0.01172+-0.0033	0.61230+-0.0154	0.00000+-0.0000	*															
Kazakh [27]	0.00000+-0.0000	0.00098+-0.0010	0.00684+-0.0027	0.00098+-0.0010	0.00000+-0.0000	*														

Table S5. Pairwise differences among twenty regional populations based on mtDNA complete control region sequences as calculated using Arlequin v3.5

Kyrgyz [27]	0.00000+-0.0000	0.00000+-0.0000	0.00586+-0.0022	0.00000+-0.0000	0.00000+-0.0000	0.00977+-0.0026	*													
Kashmiri [9]	0.00000+-0.0000	0.03027+-0.0053	0.46484+-0.0140	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	*												
Kazakh [41]	0.00000+-0.0000	0.00000+-0.0000	0.00098+-0.0010	0.00000+-0.0000	0.00000+-0.0000	0.00098+-0.0010	0.00000+-0.0000	0.00000+-0.0000	*											
Makrani [26]	0.00000+-0.0000	0.00391+-0.0019	0.07227+-0.0064	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	*										
Mongol [42]	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00293+-0.0016	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	*									
Pashtun [7]	0.00000+-0.0000	0.15527+-0.0103	0.36230+-0.0128	0.00098+-0.0010	0.00488+-0.0020	0.00000+-0.0000	0.00000+-0.0000	0.01172+-0.0036	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	*								
Pathan [25]	0.00000+-0.0000	0.11816+-0.0091	0.81836+-0.0103	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.01562+-0.0037	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.03027+-0.0051	*							
Russian [27]	0.00000+-0.0000	0.0000+-0.0000	0.00293+-0.0016	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	*						
Tajik [27]	0.00000+-0.0000	0.00000+-0.0000	0.00586+-0.0022	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	*					
Turkmen [27]	0.00000+-0.0000	0.00977+-0.0026	0.09766+-0.0075	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00781+-0.0028	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	*				
Tajik [7]	0.00000+-0.0000	0.08398+-0.0075	0.43652+-0.0128	0.00098+-0.0010	0.00098+-0.0010	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.72363+-0.0138	0.00098+-0.0010	0.00000+-0.0000	0.00000+-0.0000	0.00098+-0.0010	*			
Turkmen [7]	0.00000+-0.0000	0.12402+-0.0086	0.10742+-0.0088	0.06641+-0.0075	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00293+-0.0016	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.68262+-0.0166	0.01660+-0.0037	0.00000+-0.0000	0.00000+-0.0000	0.11621+-0.0107	0.48340+-0.0161	*		
Uzbek [7]	0.00000+-0.0000	0.03906+-0.0058	0.64844+-0.0139	0.00391+-0.0019	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.02246+-0.0040	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.33203+-0.0149	0.02051+-0.0038	0.00000+-0.0000	0.00000+-0.0000	0.05469+-0.0053	0.38672+-0.0148	0.43164+-0.0156	*	
Uzbek [27]	0.00000+-0.0000	0.00195+-0.0014	0.16895+-0.0100	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00000+-0.0000	0.00293+-0.0016	0.00098+-0.0010	0.07617+-0.0100	0.02734+-0.004	9 *

* GenBank Accession 'EU565791-EU565815'
GenBank Accession 'EU565766-EU565790'

Haplotype	Hazara (Present Study)	Baluch*	Hazara [7]	Kazakh[27]	Kyrgyz[27]	Kashmiri[9]	Kazakh[41]	Mongol[42]	Pashtun[7]	Pathan[25]	Tajik[27]	Turkmen[27]	Tajik[7]	Turkmen[7]	Uzbek[7]	Uzbek[27]
Нар_27	14	0	3	6	9	17	11	1	4	11	2	23	10	6	4	11
нар_134 Нар 109	9	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0
Hap_122	9	0	0	2	0	0	1	0	0	0	0	0	0	0	0	1
Hap_120	8	0	0	7	1	0	2	3	0	0	4	3	0	0	1	2
Hap_140	7	0	0	1	0	1	0	0	0	0	0	0	3	0	0	2
Нар_202 Нар 36	5	0	1	7	16	0	9	9	1	5	0	6	0	1	0	8
Hap_31	4	0	0	1	3	0	0	1	1	0	6	0	1	0	0	2
Hap_75	4	0	2	8	6	0	2	0	0	0	0	2	1	3	2	5
Hap_94	4	0	1	1	0	0	0	0	0	0	5	2	0	0	0	2
Hap_157	4	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Нар_15	3	0	0	2	1	0	2	0	0	3	0	1	2	2	0	6
Нар_77	3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Hap_91	3	0	3	1	0	0	0	0	0	0	0	0	0	0	0	0
Hap_105	3	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0
Hap 123	3	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1
Hap_131	3	0	0	0	0	2	0	0	0	1	0	5	0	0	0	0
Hap_136	3	0	0	1	0	0	2	0	0	0	0	0	0	0	0	0
Hap_153	3	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
Hap_16	2	0	3	1	1	0	0	0	2	1	0	0	0	0	0	2
Нар_40	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Hap_111	2	0	1	1	0	0	0	0	0	0	0	0	0	0	0	3
Hap_112	2	0	1	1	1	0	1	2	0	0	0	1	0	0	0	0
Hap_118	2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
нар_145 Нар 147	2	0	0	0	0	U 1	0	0	0	2	0	0	0	0	1	2
Нар_148	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hap_154	2	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0
Hap_159	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Hap_166	2	0	0	0	0	1	0	0	0	0	4	0	0	0	0	0
Нар_172	2	0	0	0	0	0	0	0	1	1	0	2	0	0	0	0
Hap_186	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Hap_209	2	0	0	1	0	0	2	1	0	0	0	0	0	0	0	1
Hap_210	2	0	0	4	7	0	4	6	1	0	1	3	0	0	1	2
Нар 5	1	2	0	0	1	7	0	0	2	3	0	0	1	0	1	1
Hap_14	1	0	0	0	1	0	1	1	0	0	15	0	0	0	1	2
Hap_18	1	0	0	1	0	0	0	3	0	1	0	1	5	0	1	0
Hap_19	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hap_28	1	0	0	1	5	2	2	0	0	0	0	0	0	0	0	0
Нар_44	1	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hap_72	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Нар_73	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0
Hap_74 Hap_79	1	0	1	0	0	0	0	0	0	0	0	0	0	0	2	0
Нар_93	1	0	1	0	0	0	0	1	0	0	0	0	0	0	1	1
Hap_96	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	1
Hap_98	1	0	1	0	4	2	1	0	0	1	0	0	0	1	3	1
Hap_103	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Нар_100	1	0	0	0	0	2	0	1	0	0	0	0	0	0	0	0
Hap_130	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Hap_132	1	0	0	0	0	0	0	0	0	2	0	0	1	0	0	0
Hap_137	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
Нар_161	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Hap_162	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
Hap_165	1	0	0	1	0	0	0	0	0	1	0	5	2	0	1	0
Hap_167	1	0	0	1	0	2	1	0	0	2	14	0	4	2	0	1
Нар_170	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Hap_187	1	0	0	0	0	0	1	0	1	0	0	0	1	1	0	0
Hap_192	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
Hap_193	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
нар_196 Нар 199	1	0	0	0	0	U 1	0	0	U 1	U 1	0	0	0	0	0	0
Нар_200	1	0	0	1	0	1	2	0	0	2	0	1	0	0	4	3
Hap_206	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0
Hap_213	1	0	0	0	2	0	1	0	0	0	0	4	0	1	0	0
Hap_215	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
Hap 223	1	0	0	0	1	1	0	0	0	0	0	0	3	0	0	0
Нар_227	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0
Hap_229	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Hap_233	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Hap_234	1	0	0	0	0	2	0	0	0	0	0	0	0	0	2	0
Нар_239	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Hap_242	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1
Population Sample Size	319	25	78	256	249	317	151	196	90	230	244	249	146	75	127	328

4

Table S6. Comparison (based on sequence n.p 16024-16569) of Haplotypes from Hazaras with Haplotypes from Central Asian Populations

* GenBank Accession 'EU565791-EU565815'